Robert Q. Topper

Professor of Chemistry

Quantum and classical thermodynamics of clusters and molecules

The prediction of thermodynamic properties of molecules and molecular clusters is one of my most active research areas (see "Aerosolized environmental nanoparticles" above). This line of research arose from my postdoctoral research under Donald Truhlar (U. Minnesota) and David Freeman (U. Rhode Island).

(1) R.Q. Topper, D.L. Freeman, D. Bergin* and K. LaMarche**, Computational techniques and strategies for Monte Carlo thermodynamic calculations with applications to nanoclustersinvited book chapter, Reviews in Computational Chemistry, Vol. 19, pp. 1-41, K.B. Lipkowitz, R. Larter and T.R. Cundari, Eds., Wiley-VCH/John Wiley and Sons, New York (2003). ISBN 0-471-23585-7. PDF

(2) R.Q. Topper, Adaptive path-integral Monte Carlo methods for accurate computation of molecular thermodynamic properties, invited book chapter, Monte Carlo Methods in Chemical Physics, Advances in Chemical Physics105, Chapter 5, pp. 117-170, D. Ferguson, I. Siepmann, and D.G. Truhlar, Eds., John Wiley & Sons, Inc., New York (1999).

(3) R.Q. Topper, Q. Zhang, Y.-P. Liu, and D.G. Truhlar, Quantum steam tables. Free energy calculations for H2O,D2O, H2S, and H2Se by adaptively optimized Fourier path integrals, Journal of Chemical Physics98, 4991 (1993). PDF

(4) R.Q. Topper, G.J. Tawa, and D.G. Truhlar, Quantum free-energy calculations: A three-dimensional test case, Journal of Chemical Physics97, 3648 (1992). PDF ; Erratum PDF

(5) R.Q. Topper and D.G. Truhlar, Quantum free-energy calculations: Optimized Fourier path-integral Monte Carlo computation of coupled vibrational partition functions,Journal of Chemical Physics97, 3648 (1992). PDF

* = Undergraduate / graduate student researcher.

**=Undergraduate student researcher.