The Bridge of the Future EID101D

Professor Tzavelis Fall 2011

What is the Bridge of the Future?

- Durable
- Cost–Effective
- Aesthetically Pleasing
- Energy Producing

Goals

Constraints

- Cost
- Materials
- Time
- Weight

Calculations and Analysis

 $\sum F_x = 0$ Net forces in x-direction have to equal zero

 $\sum F_{y} = 0$ Net forces in y-direction have to equal zero

 $\sum M_z = 0$ Net rotation about z-axis has to equal zero

Calculations and Analysis

$$Stress = \frac{F}{A}$$

$$F = Force$$
 (weight on bridge)

A = Cross-section of the cable

 $F_{y} =$ Force on individual cable

SF = Safety Factor (1.6)

Calculations and Analysis

C = Compression on tower $A_{tower} = Surface Area of tower$ $F_{y(tower)} = Force on tower$ SF = Safety Factor (1.6)ksi = kips/sq.in

Group 1

Karmen Chong, Austin Joa, Kelvin Lin, Eitan Selter, Ezra Sultan

Design Criteria

- Reliability/Durability
- Maintenance
- Constructability
- Cost
- Usability
- Aesthetics
- Energy Production

Final Design

Construction

Testing Phase

Thoughts

- No failure at any point in the bridge
- Basswood cross beams could be replaced with a more durable material

Group 2

Miles Blue Spruce, Charles Greenstein, Michael Hirschberger, Daniel Schwartz, Bin Wu

The Proposed Designs

The Decision Matrix

Decision Criteria	Constructability	Aesthetic Appeal	Cost	Total Weighted Score (Out of 10)
Weighting Factor	0.35	0.35	0.3	
Daniel S. (Cable Stayed)	9	9	9	
Criteria Weighted Scores	3.15	3.15	2.7	9
Miles B. (Cable Stayed)	8	8	9	
Criteria Weighted Scores	2.8	2.8	2.7	8.3
Mike H. (Cable Stayed)	8	8	9	
Criteria Weighted Scores	2.8	2.8	2.7	8.3
Bin W. (Arc with Suspension)	7	10	8	
Criteria Weighted Scores	2.45	3.5	2.4	8.35
Chuck G. (Suspension)	9	10	8	
Criteria Weighted Scores	3.15	3.5	2.4	9.05

The Winning Design

The Model

The Test

Group 3 Castle Point To Chelsea Pier

Anthony Colangeli, Elizabeth Juette Min J. Kang, Peter Morfe, Laura Quan

Decision Matrix

Weights	Components			
0.1	Constructability			
0.15	Maintenance			
0.1	Durability/Reliability			
0.05	Sustainability			
0.2	Usability			
0.1	Cost			
0.15	Aesthetics			
0.15	Energy Production			

Unique Features for the Bridge

Usability

- Bus lanes
- Park
- Facilities inside of the Towers

Energy Production

- Wind Turbines
- River Current

Basis of the Design

Testing

Lessons Learned

Group 4

Raymond Fu, Tyler DiStefano, James Lastihenos, Piotr Michalik, Gerard O'Donnell

Final Design

Decision matrix tool

Weighted average of five possibilities

 All design possibilities limited to a cable stayed bridge (most cost efficient for the amount of weight needed to be held)

Group 5

John Biswakarma, Emily George, Ratan Rai Sur, Sivan Shemesh, Caroline Yu

Design/Philosophy

- Cable-stayed bridge
- AASHTO guidelines and NJ and NY Building
 Codes → Specifications table
- Replacement of Tappan Zee Bridge
- Need to alleviate traffic → increase in carrying capacity by adding more lanes
- Convert vibrational motion to electrical energy

Proposed Solutions

Decision Matrix

2THP	Aesthetics	Sustainability	Constructed i kity	Mâintenance	Cost	Usability	Durability	SUM	
Alternative	0.05	0.05	0,15	0.15	0.15	0.15	0.20	1	
John Biswalarma	7	8	9	8	6 0.90	5 0.75	6	6.15	
Emily George	1 0.05	5 0.25	6 0.90	6 0.90	2 0.30	5 0.75	7	4.55	
Ratan Rai Sur	9 0.45	8 0.40	7	8	5 0.75	5 0.75	5	5.75	
Sivan Shemesh	6 0.30	2 0.10	5 075	3 0.45	4 0.00	10	9	5.5	
Caroline Yu	5 0.25	3 0.15	3 0.45	3 0.45	4	10	8	5	

Final Model

Details of Bridge Model

Key Lessons Learned

Schedule ample amount of time needed for

design process

- Research past solutions
- Stay up to date with similar current projects
- Be careful of overbuilding

