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Chapter 17

ON THE ZERO POINT ENERGY DIFFICULTY
OF QUASICLASSICAL TRAJECTORY SIMULATIONS

Song Ling and Robert Q. Topper
Department of Chemistry, Medical Technology, and Physics
Monmouth University
Thomas A. Edison Hall of Science
West Long Branch, NJ 07764-1898

Abstract

Following the work of Guo, Thompson, and Sewell (Y.Guo, D.L.Thompson, and
T.D. Sewell, J.Chem.Phys. 104, 576 (1996)) on the zero point energy correction
of classical trajectories, we emphasize that the zero-point energy of a molecule is a
quantum phenomenon with no classical counterpart, rooted soundly in the position-
momentum uncertainty principle. As a consequence certain quantum “ingredients,”

* such as those introduced using Heller’s thawed Gaussian wavepacket dynamics (E.J.
Heller, J.Chem.Phys. 62, 1544 (1975)), are probably necessary to avoid the compu-
tational difficulties in applying zero-point energy corrections to classical molecular
dynamics trajectories which have been described in the literature to date.

1. Introduction

Despite remarkable advances in computing technology and algorithms, the vibrational
and rotational motions of medium-sized polyatomic molecules still defy full quantum-
mechanical analysis, and so classical trajectory studies are still widely applied [1, 2]. How-
gver, in quantum mechanics the slowest possible motion of each rovibrational mode is not
literally “standing still”, i.e. it is not a fixed point in the classical phase space. This is the
so-called zero point motion, and it leads to the zero-point energy (ZPE) for that mode. Since
there are many rovibrational modes in a polyatomic molecule, setting the ZPE of one mode
to be zero by resetting the energy scale does not reset the ZPE to be zero for all modes;
there is thus no loss of generality in speaking of the ZPE (rather than the zero-point motion)
problem for classical trajectory studies.

Even though conventionally the study of classical-quantum correspondence happens
at high energies or large quantum numbers for polyatomic molecules, [3], the low energy
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states of molecules are of great chemical interest as well. For example, if the ZPEs of
several modes of a Jarge molecule are “squeezed cut” at the same time, the amount of that
energy may be sufficient to break a chemical bond. Another example is the umbrella motion
of NH3, which is well-described by a double well potential. At low energies the umbrella
motion is classically forbidden and is only achievable by quantum mechanical tunneling
wvith a time scale inversely proportional to the energy splitting of the ground states. If an
NHs functional group is attached to a large polyatomic molecule which functions like a
leat bath, the energies of the modes of the bath can flow into the attached -NH; group and
nake the umbrella motion more probable than it would be for the isolated NHj3 molecule.

Guo, Thompson, and Sewell (GTS)[4] pointed out that past efforts[5] to modify classi-
@l mechanics, either passively by abandoning trajectories with a mode energy lower than
tie ZPE after the trajectories are integrated or actively by modifying the equations of motion
curing the integration to enforce the ZPE condition lead to unphysical results. GTS empha-
sized that statistics (or probability) must be utilized in the comparison between classical
tajectory and quantum studies. It is not the individual classical trajectory but the ensemble
average of a swarm of them that should be compared to the quantities like the mode energy
cilculated by the propagation of a quantum wavefunction.

We note in the GTS paper, after they compared classical ensemble averages with quan-
ftum expectation values they concluded: “The search for practical solutions to the ZPE
problem should focus upon ways for accounting for interference effects (i.e., semiclassical
theories) and perhaps by improving the quasiclassical procedures, under the guidance of
quantum mechanics, so as to obtain a better classical-quantum correspondence.”[4]

Using the semiclassical Gaussian wavepackets that Heller[6] proposed for other studies

to treat a single "stiff” mode while the “soft” modes were still treated classically, Alimi,

Garcia-Vela, and Gerber[7] described the melting of some inert gas clusters. However, in
their paper the cases studied for the “stiff” mode were one-dimensional. The ZPE issue
troubles chemists the most in multi-mode systems, and in such systems there is likely more
then one “stiff™ mode.

Heller[6] proposed a multi-dimensional semiclassical scheme to integrate the time de-
pendent Schrédinger equation, different from the conventional approach of letting a dimen-
sionless parameter with % in the numerator go to zero. In this paper, Heller used a quadratic
Taylor expansion of the potential function about the moving “center” of a Gaussian wave-
function. The resulting wavefunction remains Gaussian with determining parameters gov-
erned by a set of equations of motion, i.e., ordinary differential equations (ODE) in time.
Interestingly, the time-dependent position and momentum expectation values fall out to fol-
low exactly the classical equations of motion, while the other complex parameters account
for interference effects (since the wavepacket corresponds to a swarm of classical trajecto-
ries moving in phase space), with a phase factor containing the classical action integral.

Computationally, this becomes an initial value problem of ODE integrations. In ad-
dition to integrating the classical equations of motion, the (complex) quantum parameters
are also integrated along the way. We present a multi-dimensional Gaussian derivation in
Section 2 and study the choice of both classical and quantum initial conditions in Section 3.
Also in Section 3 we show that the thawed Gaussian helps avoid the ZPE difficulty by cal-
culating the mode energy quantum mechanically as an expectation value of the propagating
wavepacket, and the result contains the classical mode energy in the i— > 0 limit.
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2. The Gaussian Wavefunction

We present a derivation for arbitrary dimensional systems of the Gaussian wavepacket
in Cartesian coordinates, and then we derive the expression for the mode energy.
Follow Heller[6], we write the wavefunction as:

$(@1, s Znst) = expl 3 3 et a5 () @i (t)) + 'Z (8)a;a;(0) +2 7))

k=1 j=1
(1)

where it is straightforward to show that ;(¢) and p;(¢) are the expectation values of %;
and p;, i.e., the j** position operator and momentum operator, respectively.
The Hamiltonian operator in a general time-independent potential is

P 1 &8
H=- 2‘ 82-|-V(:v1,.. Tn) )

and the potential function is Taylor-expanded up to quadratic about (z(t), ..., zn(t)), i.e
the instantaneous “center” of the coordinate space wavefunction. Thus we obtain:
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The above 3 and the Taylor-expanded V are substituted into the time dependent
Schrédinger equation:
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We note that the complex o matrix is symmetric, i.e., a;x(t) = o;(t) since (z; —
7;(t)) (zk — zk(t)) = (zx — zx(t))(z; — z;(t)). As a consequence, the real and imaginary
puts of the o matrix form two real symmetric matrices. We count the number of real
euations of motion for an n-dimensional system as below: n equations for the position
eipectation values x;(t), n equations for the momentum expectation values p;(t), n(n+1)
etuations for the a;x(f) matrix elements, and 2 equations for y(t). Therefore the total
nimber of real equations of motion is (n + 1)(n + 2) and increases as n? (as opposed
to classical n-dependence). It must be noted that this behavior may limit the use of the
Gaussian wavefunctions in place of classical trajectories for large n systems.

Since the time evolution of the position and momentum expectation values are classical
as shown above, the choice of the initial positions and momenta can be done by any con-
ventional method applied in classical trajectory studies[1]. When choosing the other initial
canditions, the matrix of the imaginary part of a3 (0) must be positive definite to ensure
that the Gaussian wavefunction is square integrable throughout the time evolution. Without
losing generality, the real part of the aj, (0) matrix elements, Re[a;(0)], and the real part
of¥(0), Re[y(0)], can be chosen to be zero. The imaginary part of the diagonal o matrix
elements, Im[ay(0)], can be chosen to mimic the ground state wavefunction of each mode,
148,

1 AT (TR,
Imlay (0)] = 5\/mc|s(—a;2——)

After the diagonal matrix elements are chosen, the off-diagonal imaginary a matrix ele-
ments can thus be selected to satisfy the matrix positive definite condition, reflecting the
physical fact that the coupling between different modes are perturbative to the modes, not
overtaking the modes. The imaginary part of v(0), I'm[v(0)], can be determined by normal-
izing the initial Gaussian wavefunction. As a special case, if all of the imaginary parts of
the off-diagonal elements of the initial a;; (0) matrix are chosen to be zero, (this amounts to
saying that at a moment of the wavepacket evolution there is no coupling between different
modes so that at that moment the wavefunction is a product of the wavefunctions of each
mode), the imaginary part of v(0) is

|21(0),....zn (0l €))

h Th n @ 1
Im[y(0)] = 5111{(?)2 E m} | (10)

3. Applications to Generalized 2-Dimensional Systems and the
Hénon-Heiles Potential

For purposes of discussion, at this juncture we develop and present the equations of

motion for two-dimensional systems, with application to a model system widely known

as the Hénon-Heiles potential.[8] The extension of these equations to multidimensional

systems is straightforward but less illustrative.
The Gaussian wavefunction for a general 2-dimensional system is written as follows:

Yaut) = ep{zlant)E - (1) +2an(E)e - 2 —YE) +an(t)y - yE)* +
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Assuming the mass factor is scaled so that m, = my, the (n + 1)(n + 2) = 12 real
equations of motion read: ‘

£() =& f) (12)
9(t) = pf,nﬂ -
: 15174
pe(t) = —Elz(t),y(t) (14)
) oV
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. 2
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The choice of the initial conditions of z(0), ¥(0), p=(0), and p,(0) can be made
based on established methods for choosing initial conditions for classical trajectory
studies depending on the system of interest [1]. The choice of the initial a’s and
v is as follows: Re[cz2(0)] = Relagy(0)] = Reloyy(0)] = Re[y(0)] = 0,

and Im[az.(0)] = %\/m||?9im‘§lx(0),y(0)”a Imfay,(0)] = %‘\/m“%%‘;']mm),y(ﬂ)”: and

Imfagy(0)] = 0.1\/Im[am(0)]1m[aw({})] (to choose the coupling strength to be 10%

of the average mode strength). The normalization of the initial wavefunction gives

—_ & nh . :
Im[y(0)] = 5ln e O T T where we notice the determinant of

the imaginary part o matrix is under the square root and must be positive as mentioned
previously.

Following GTS, the Hamiltonian (symbolically for both classical and quantum opera-
tors) of the Hénon-Heiles system [8] is written as:

2 2
Dy Py loos 1oy o 13
H—Em-l-—;i-i“gwmm towy Ty -3y (24)

Also following the GTS paper, the classical initial conditions are selected by the random
phase method for the uncoupled 2-dimensional harmonic oscillator:

ai(0) = | 2T i g, @5)

pi(O) =4/ (Zn,; - l}ﬁwi cos @; (26)

where i = z and y, ¢, and ¢, are each chosen randomly between 0 and 27 and the size of
fi is chosen as an adjustable parameter indicating the deviation from the classical regime.
We note that these initial conditions do not correspond to picking up points from the con-
stant energy shell, or the microcanonical ensemble, due to the anharmonic coupling terms.
Therefore, generally speaking each classical trajectory has a different total energy to start
with (but each energy stays constant over the propagation time).

The classical mode energy is

1

B0 =5

P + () (27)
where ¢;(t) and p; (%) are the position-momentum expectation values of the Gaussian wave-
function at time t.

The quantum mode energy with the Gaussian wavefunction approximation can be calcu-
lated analytically, where we let the state vector propagate in time (this is a general formula,
not specific to the Hénon-Heiles system):

EP (1) = 5 < (0)lp? + I () > (28)

Integrating over the coordinate space Gaussian wavefunction, we obtain for the = mode
(replacing = by y will give the y-mode formula): '
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B2 (t) = BZ(t) (29)

oo (0P Tmlyy (8] + Lictes (O Irafase ()] — Ty (9]D2(6) + 2 Irafary (¢
RO Lt w ()] + Glocey ()] Fmfoces ey (O Da(8) + 2 Il (0]}

where ES(t) = 2;pm{t) 4+ 2uﬁzz(t) is the classical x-mode energy as in eq. 27, D1(t) =
Im[ogy (8)]Im[ayy (t)] — Im?[azy(t)] is the determinant of thé imaginary part o matrix,
and D (t) = Re[agzqs(t)]|Refomy ()] + Im{azs ()] Im[egy(2)].

Even if the expectation values z(¢) and p(t) happen to both be equal to zero at some time
t (which results in zero classical mode energy), the quantum mode energy Ed%(¢) is still
non-zero. Moreover, the comparisen between the Gaussian wavefunction and the classical
trajectory with the same initial position-momentum conditions is closer than comparing the
time propagation of an unperturbed harmonic oscillator eigenfunction and a swarm of clas-
sical trajectories. First of all, the initial Gaussian already has its position and momentum
expectation values chosen classically and these expectation values are integrated by classi-
cal equations of motion, i.e., their evolution is identical to that of classical trajectories. In
stark contrast, the unperturbed quantum eigenfunctions tend to have a parity (either even
or odd) and therefore have zero position and momentum expectation values. Secondly, the
Gaussian wavefunction contains the classical trajectory as a special case, and when the size
of the Gaussian shrinks to a point the position-momentum expectation values will trace out
a classical phase space trajectory.

Similarly, the classical coordinate autocorrelation function is defined as

C&(t) = hm —/ dt'q;(t)gi(t +¢t) (30)

and its Fourier transform gives the power spectrum.
The quantum counterpart is defined as
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We see that the quantum autocorrelation function is a sum of the classical autocorrela-
tion function and a correction term which accounts for quantum interference effects (such
as those which give rise to the zero-point energy). Unfortunately, since the time propagator
operates on the linear term of the coordinate times the wavefunction, the resolution of the
correction term is even beyond Gaussian wavefunction dynamics, and either Hamiltonian
matrix diagonalization, Feynman path integration, or the numerical integration of the time
dependent Schrédinger equation must be resorted to.

4. Conclusion

Heller’s thawed Gaussian wavefunction seems to be able to help avoid the mode ZPE for
classical trajectories. Its mode energy can be calculated analytically, as shown in Section 3,
and is shown to be a sum of the classical mode energy plus a quantum correction term. Even
though the classical mode energy often goes below the mode ZPE, the quantum correction
term helps maintain the mode energy to be above the mode ZPE throughout the integration
of the wavefunction.

Computationally, the Gaussian wavefunction provides a straightforward extension of
integrating the classical equations of motion, i.e., all that is involved in principle is the so-
lution of additional equations of motion to the classical ones. Since the method is based
on integrating ordinary differential equations, upon which classical simulations are based,
the computational effort of the Gaussian wavepacket need not necessarily be taxing if ap-
propriate algorithms are used. The method formally scales as n?, which may prevent its
use for very large systems; however, simulations of intermediate-sized systems should be
attainable.

Our understanding of the GTS paper is that it is both unnecessary and incorrect to
abandon or modify individual trajectories, since the ZPE-violating trajectories are part of
the statistics, without which the statistics would be skewed, biased, and untrue. In the re-
sults shown in the GTS paper, the unrestricted classical ensemble calculations match the
quantum results far better than the other techniques that attempted to correct the ZPE by
removing ZPE-violating trajectories (see Fig. 2 and Fig.5 of Ref. 1). The very pres-
ence of the ZPE violating trajectories is ostensibly responsible for this behavior. Generally
speaking, a swarm of classical trajectories behaves differently from individual ones. In this
regard it would seem that quasiclassical trajectory studies of reaction dynamics ought to be
based on the statistical properties of a swarm of trajectories, and not solely the individual
dissociating or isomerizing trajectories which are part of the statistics contributing to the
overall probability distribution. Dissociating or isomerizing trajectories may correspond to
a small probability amplitude of the quantum wavefunction in the relevant coordinate (or
momentum) space regions. For classical trajectory studies such trajectories should not be
abandoned or modified.

The fundamental cause of the classical ZPE difficulty is that the ZPE is a quantum
concept with no classical counterpart. It is a consequence of our inability to simultaneously
determine the position and momentum of a particle to an arbitrary precision as we may do
in classical mechanics (at least in principle). Rather than a fixed point in phase space, when
we try to minimize both the position and momentum at the same time, the closest we can get
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is a ground state wavefunction with a finite position or momentum probability amplitude.
There is a finite uncertainty in both the position and momentum, as if the motion, however
low from the classical point of view, persists; thus, we have the so-called zero point motion
and energy. To help “fix” such an issue from within the classical realm in a consistent way
is unlikely. We believe that some quantum ingredients are needed to address the classical
ZPE difficulty.

There are three final points worth emphasizing. One is that thawed Gaussian wavepack-
ets extend to multiple dimensions in a straightforward way, as shown in section 2 (in coordi-
nate space, they are simply multi-coordinate wavefunctions), and the computational effort
scales rather modestly with the size of the system. There appears to be no fundamental
reasons why they cannot be computationally applied to polyatomic molecules where ZPE
effects are important. The second point is that a single time-evolving Gaussian wavepacket
does not correspond to a single classical trajectory, even though its position-momenta ex-
pectation values trace out that trajectory. Rather, it corresponds to a swarm of trajectories
which intefere with one another in the Feynman path-integral sense. The wavepacket itself
is of quantum-mechanical nature, as it is an approximate solution to the time dependent
Schrédinger equation. The wavefunction is much richer in information content than any
single trajectory, requiring more than the position-momentum expectation values to de-
scribe the entire statistics. For example, other expectation values, like < p? > and < 2% >
(and higher order "moments”) cannot be generated by the single trajectory that carries the
position-momentum expectation values; as we saw in Section 3, it is the < p* > vs. < p >
and < 22 > vs. < = >? difference that helps maintain the mode energy of which ZPE is
a part. This helps bring out the last point we want to emphasize: a single thawed Gaussian
already contains interference effects by its wave nature (as an approximate solution to the
time dependent Schrédinger equation). More explicitly, a Gaussian can be expressed as a
superposition of other waves. A well-known example is to express the coordinate space
Gaussian as a weighted sum of plane waves, where the weight” is the momentum space
wavefunction. In the present context, a single Gaussian itself can be approximated by a
weighted sum of other Gaussians. This illustrates that the interference effects necessary
to consistently describe the pheonomenon of zero-point energy avoidance are indeed con-
tained in a single, time-evolving Gaussian wavefunction.
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