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A microcanonical kinetic theory of reactions based upon the structure within phase space is 
developed. It is shown that the dynamics of reaction across an energetic barrier is mediated by 
invariant manifolds embedded in phase space that have the geometry of simple cylinders. The 
ideas are developed by considering molecular systems modeled by two vibrational degrees of 
freedom, a reaction coordinate and a "bath" coordinate. The kinetic theory is constructed by 
focusing on the dynamics between n mapping planes (Un-map") and the "reactive island" 
(RI) structure within them. We discuss how the structure of the conformer population decay 
in isomerization reactions can be obtained from the RI kinetic model. Formal solutions of the 
kinetic equations are discussed with specific attention given towards the calculation of the 
isomerization reaction rate. The formal theory is developed in Paper I of this series. Numerical 
considerations and applications to the reaction dynamics of model molecular systems with two 
degrees of freedom will be given in Paper II and extension of the theory and applications to 
multidimensional systems will be given in Paper III. . 

I. INTRODUCTION 

An energetic barrier separating reactants from products 
must be overcome in order for most chemical reactions to 
proceed. A reactant molecule that has in some manner ac­
quired enough energy to exceed the potential barrier is said 
to be activated. The experimental rate at which activated 
molecules become products is related to the concentration of 
reactants by the rate constant for the reaction. For example, 
in the unimolecular conversion A ....... B the rate of formation 
of B is given by kA _ B [A ], where kA _ B is the rate constant 
and [A] is the concentration of A. I

-
5 

Chemical reactions are typically classified as "complex" 
if they can be decomposed into two or more "elementary" 
reactions. Each elementary reaction has associated with it a 
set of well-defined rate constants. The resulting series of ele­
mentary steps, which give rise to the overall complex reac­
tion, is then referred to as the kinetic mechanism. The over­
all rate law for the complex reaction is obtained from the 
first-order differential equations which arise from the kinetic 
mechanism. 

From a theoretical perspective, it is desirable to be able 
to describe and understand the microscopic process of reac­
tants becoming products. In other words, one would like to 
know the detailed dynamical pathways reactants must trav­
erse to become activated and ultimately become products. 
The aggregation of such information is fundamentally a dy­
namical problem. Such a detailed description of the dynam­
ics forces one to focus on the subprocesses within elementary 
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reactions. Thus, the goals of both of the above perspectives 
are similar in that an understanding of an overall reaction in 
terms of its constituent processes is sought. 

The problem of calculating rates and rate constants for 
elementary reactions is one that has received considerable 
attention over the past several decades-the earliest studies 
being those of Eyring, Wigner, and Hirshfelder. 6,7 Since 
those initial studies, a large body of literature on reaction 
rate theories has been established. For example Kramer first 
considered rates of reaction in viscous media.8 Rice-Ramsp­
berger-Kassel (RRK) developed a simple statistical model 
of reaction rates based upon the complete randomization of 
the dynamics of N (harmonic) oscillators.2,3,5 Marcus 
modified the RRK statistical model to include the density of 
activated states and the density of transition states 
(RRKM).9-11 Keck proposed variational transition state 
theory and discussed the least upper bound to the rate ofbi­
and ter-molecular reactions. 12 Light and Pechukas devel­
oped a phase space theory of chemical reaction rates. 13-15 

Miller developed the quantum and semiclassical version of 
transition state theory (TST) (Eyring theory).16 Miller, 
Pollak, Pechukas, and Child developed a phase space flux 
theory for bimolecular reactions. 17-20 Several other theoreti­
cal studies are also under development which seek to estab­
lish a unimolecular rate theory for molecular systems in the 
condensed and gas phase. 21-27 The statistical theories men­
tioned above have proven to be offundamental value in both 
predicting and understanding chemical reaction rates. The 
reader interested in the recent developments and historical 
survey of reaction rate theories is referred to several excel­
lent articles. 20,28,29 

The fundamental nature of the above cited theories not 
withstanding, experimental work and numerical models of 
chemical reactions reveal some basic discrepancies with the-
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ory.30-40 Such disagreements have been especially well cited 
for unimolecular reactions. In some cases, the trends (pres­
sure dependence, isotopic substitution, etc.) predicted by 
these theories are diametrically opposed to those observed. 
Such deviation between experiment and TST (or RRKM) 
theory is often referred to as "non-RRKM" behavior. 

The development of a kinetic theory of reactions that 
accurately treats both the decay of initial nonequilibrium 
populations and the associated decay rates (rate constants), 
requires physical models that allow one to understand, from 
first principles, the nature of the processes through which 
reactants become products. Given a reasonably accurate po­
tential energy surface, obtained through spectroscopic or ab 
initio means, one should be able not only to obtain reasona­
ble agreement with experimental rate data, but also gain an 
understanding of precisely how and why a theoretical pre­
diction may deviate from what is observed. It is precisely for 
this kind of detailed information that a significant amount of 
both theoretical and experimental work has been attempted. 

The basic statistical theory that has emerged to describe 
unimolecular reactions is typically referred to as "RRKM" 
or "TST" theory. These theories are the most simple possible 
statistical theories that recognize the existence of a quantum 
(or classical) density of states. Perhaps Bauer states the situ­
ation best when he writes "It [RRKM theory] is not an ap­
proximation to a realistic model; rather, it is an accurate solu­
tion to an idealized model."34 An important question is then, 
under what conditions are the molecular dynamics not 
ideal? 

The above question is one that was initially recognized 
by Wigner and Hirshfelder.7 In their classic paper they dis­
cuss the "recrossing" problem and how it may be dealt with 
in calculating quantum transmission coefficients, i.e., 
branching ratios. Miller focused on the recrossing problem 
and developed a unified statistical rate theory that bridged 
the gap between the rate theory for bimolecular reactions 
that are "direct" and the rate theory for bimolecular reac­
tions that proceed through a long-lived complex.41 Pollak, 
Pechukas, Child, and J. P. Davis discussed how one may go 
beyond the unified statistical theory of Miller to solve the 
recrossing problem with less restrictive assumptions and 
thus develop a more accurate rate theory for bimolecular 
reactions. 17-20.42-44 

Much ofthe focus of the above work has been to develop 
a rate theory that does not require explicit dynamical infor­
mation. However, the studies of Pollak, Pechukas, Child, J. 
P. Davis, and Truhlar45 have shown that an accurate treat­
ment of the recrossing problem must include within it dy­
namical information. From the perspective of nonlinear dy­
namics this implies that the structure of phase space must be 
understood in some detail in order to develop an accurate 
rate theory. 

M. J. Davis, Gray, and Skodje, in their studies of chern i­
cal reaction and intramolecular relaxation, demonstrated 
the necessity to understand the nonlinear dynamical under­
pinnings.46-SI Some of the earliest discussions along these 
lines were those of Pollak and Pechukas where they demon­
strated that PODS [periodic orbit dividing surface(s)] were 
the natural dividing surfaces between reactants and prod-

ucts in collinear bimolecular reactions (e.g., 
H + H2 -+H2 + H). These authors went further to show 
that PODS were either "attractive" or "repulsive" in char­
acter. 18

-
20 Pollak and Child went on to considered bimolecu­

lar reactions with a repulsive-attractive-replusive PODS se­
quence and demonstrated that deviations from classical 
transition state theory were accounted for by "tubes" which 
emerge from the repulsive PODS. 19,20 De Leon and Berne50 

and Gray and Rice5
! considered unimolecular isomeriza­

tion (A~B). Gray and Rice demonstrated that "turnstiles" 
arising from the standard homoclinic tangle could be used to 
understand isomerization reactions. M. J. Davis was able to 
show that "cantori" controlled the classical intramolecular 
relaxation of collinear OCS.46 M. J. Davis, Skodje, and Gray 
demonstrated the utility of these can tori in understanding 
the failure of RRKM theory for the molecular systems 
He + 12 and 1+ HI.47,48 M. J. Davis considered the map 
structure and homoclinic tangle of H + H2. 49 It is interest­
ing, indeed somewhat humbling, to note that much of the 
work above, especially with regard to PODS and reactive 
islands (see below) was anticipated in 1955 by De Vogelaere 
and Boudart. 52 

While the current development of reaction rate theory is 
impressive, nevertheless it is apparent that some basic ideas 
regarding the details of reaction dynamics have yet to be 
developed and incorporated into a general reaction rate the­
ory. In particular, a reaction rate theory that places the mi­
croscopic subprocesses within bimolecular and unimolecu­
lar reaction on an equal footing currently does not exist. One 
may naturally inquire why such a unification is important or 
even desirable? Aside from purely aesthetic reasons, the an­
swer is that it is likely new principles will be learned in the 
course of such a unification. 

In recent publications we focused our attention on the 
problem of unimolecular conformational isomerization and 
found dynamical structures we called "reactive islands" 
(RI). These reactive islands have the important property 
that all pre- or post-reactive motion must pass through 
them. A kinetic theory based upon the reactive islands was 
developed and accounted for non-RRKM behavior in model 
molecular systems.53,54 Since those initial publications we 
have shown that the nature of these reactive islands can be 
understood by focusing on the structure offour-dimensional 
phase space. 55 In so doing, one finds that the reactive islands 
are a direct consequence of the existence of invariant phase 
space manifolds embedded in four-dimensional phase space 
that have the geometry of simple cylinders. The intersection 
of Poincare mapping surfaces with these cylinders generates 
the reactive islands. These results, including rudimentary 
aspects of what we call an "n-map" RI kinetic model and the 
relationship of reactive islands to the homoclinic tangle, was 
the focus of a recently submitted publication. 55 

In this paper we develop in detail the fundamentals of 
the n-map RI kinetic theory and the cylindrical manifolds 
with emphasis on the problem of conformational chemical 
isomerization. The theory is formulated in terms of simple 
matrix equations which allow the direct calculation of con­
former popUlation decays and decay rates. Both numerical 
considerations and applications to specific molecular mod-
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els with two degrees of freedom is left for Paper II of this 
series. 56 Extension of the theory and application to multidi­
mensional molecular systems will be given in Paper III. 57 

These introductory remarks would not be complete without 
stating that this work owes a significant debt to the pioneer­
ing efforts of Davis and co-workers4

6-49 in the field of nonlin­
ear dynamics and its application to the problem of molecular 
relaxation. 

This paper has been written with an intent that it be self­
contained and present a logical progression in developing 
the theory. The "set theoretic" notation used throughout the 
text is not only necessary but an integral part of the overall 
theory. The reader interested in a detailed account of the 
theory is advised to read each section carefully-including 
frequent reference to the figures, before proceeding to the 
next section. Reference to our earlier papers would also be 
useful. 53-55 The reader interested in a less detailed account of 
the theory is advised to read Secs. I and II and the discussion 
in Sec. VI. 

The manuscript is arranged in the following manner: In 
Sec. II we discuss the cylindrical manifolds. In Sec. III we 
focus on how the cylindrical manifolds mediate the reaction 
dynamics and define n-map dynamics. In Sec. IV we develop 
the generalized RI kinetic theory for two- and multi-state 
isomerization. In Sec. V we discuss the solutions to the RI 
kinetic equations and focus on the calculation of the kinetic 
decay rate. In Sec. VI we discuss our results and conclusions. 

II. CYLINDRICAL MANIFOLDS 

A. General considerations 

The dynamics of bimolecular reactions distinguishes it­
selffrom the dynamics ofunimolecular isomerization in that 
motion in the former is unbound. Consequently, for bimo­
lecular reactions one naturally focuses on the dynamical flux 
from asymptotic reactants to asymptotic products. This flux 
is then directly related to the reaction rate constant. The 
situation is, however, different for unimolecular isomeriza­
tion. Motion that reacts from one conformer to another must 
recross the transition state. It is now less than straightfor­
ward to identify the asymptotic flux and thus the rate con­
stant for the reaction. 

The canonical rate constant, according to transition 
state theory, is proportional to the dynamical flux across the 
transition state. Thus 

(1) 

where Tr("') is the classical trace and (ql ,PI) are the reac­
tion coordinate and momenta, respectively. A fundamental 
assumption ofTST theory is that motion does not recross the 
dividing surface in a time scale short compared to the reac­
tion time scale. This assumption can, under some situations, 
be a good approximation for bimolecular reactions. How­
ever for bound motion, recrossing of the dividing surface 
always occurs-typically in a short time scale relative to re­
action. Thus, it is apparent that an accurate rate theory of 
isomerization must directly address the recrossing problem. 
To attack this problem at a microscopic level it is necessary 
to understand some basic ideas about the structure of phase 
space associated with chemical reaction. 

B. Uncoupled motion 

In a previous paper we developed the concepts of cylin­
drical manifolds in Hamiltonian systems, their properties 
and their role in mediating the dynamics across potential 
barriers. 55 In this section we consider the basic elements of 
that paper, focusing on those aspects most relevant to chemi­
cal reaction. Throughout this manuscript we will assume 
that the Hamiltonian for the molecular system is invariant to 
time reversal. Concepts in nonlinear dynamics and chaos 
will be used throughout this text. Several excellent books are 
available for the reader not familiar with this field. 58

-
61 

Consider the reaction dynamics of a molecular system. 
We assume that reaction occurs across a potential barrier 
with a simple saddle at energy E b • Let ql be the reaction 
coordinate and q2 be a transverse "bath" coordinate. For 
simplicity we will assume that the transition state between 
states A and B will be at ql = qt, stateA: ql > qt and state B: 
ql <qt. 

1. Unbound motion 

It is convenient to first consider the situation when mo­
tion is not bound along the reaction coordinate and the two 
modes are uncoupled, Fig. 1. We let state A represent reac­
tants and state B represent products. This system could serve 
as an approximate model for a bimolecular reaction (e.g., 
H + H2 -->H2 + H). We let the Hamiltonian be given by 

H(p,q) = HI (PI ,ql ) + H2 (P2,q2)' (2) 

Motion generated by H can be considered as the com­
posite dynamics of the two one dimensional subsystems HI 

q, 
qt (a) 

:=)Q'Q 
(b) 

~X& 
253C& 

Products q'L Reactants 
ql 

FIG. 1. Two state dynamics across a potential barrier. Three distinct situa­
tions are shown: (a) nonreactive, (b) asymptotic to T, and (c) reactive 
trajectories. The upper left- and right-hand part of the figure represent one 
dimensional cuts of the potential along the reaction (q, ) and bath (q2) 

coordinates, respectively. All three trajectories displayed are at the same 
total energy E, + E2 = E for a, b, and c. 
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and H 2 • However, it is instructive to examine the separable 
dynamics in full four-dimensional phase space. First, consid­
er the structure of phase space at a total excess energy I:l.E 
above Eb • The total energy may be partitioned in various 
ways between HI and H 2: A reactant trajectory at ql > qt 
with PI <0 and EI <Eb will reflect off the barrier, going 
back towards reactants and never return, Fig. 1. In phase 
space the trajectory will lie on a two-dimensional invariant 
surface whose geometry is the direct product of the circular 
S I topology of the q2 mode and the linear R I topology of the 
unbound reaction coordinate ql' The R I xS I geometry cor­
responds to a simple cylinder. Motion on this invariant cyl­
inder will have a constant action J2 in the q2 mode. [We will 
denote this invariant cylinder as 0.1, (E).] This cylinder is 
completely contained within the reactant side of the dividing 
surface qt. A schematic drawing of the situation in phase 
space is given in Fig. 2. At a total energy E a continuous set of 
foliated cylinders 0,1, (E) will exist for all energies EI < E b • 

At EI = Eb a reactant trajectory at ql > qt and with 
PI < 0 will approach the barrier top but will never quite 
reach it in the infinite future. Similarly a trajectory at ql > qt 
with PI > 0 will approach the barrier top but never quite 
reach it in the infinite past, Fig. 1. The first trajectory will lie 
on an invariant surface which we denote as W A- (E) and the 
second trajectory will lie on an invariant surface W A+ (E). 
Both of these surfaces approach at the barrier top asymptoti­
cally and have the geometry of an open cylinder. In positive 
time motion on W A+ (E) is outgoing from the barrier top 
and motion on W A- (E) is incoming to the barrier top. A 
similar pair of cylinders W jf (E) will be embedded in the 
product phase space. The four cylinders, W J (E) and 
W 1 (E), meet at a periodic orbit T(E) which lies along the 
barrier top cf. Fig. 2. 

If EI > Eb a reactive trajectory at ql > qt withpI < 0 will 
react and never return, Fig. 1. In this case the trajectory will 

Products q' Reactants 

FIG. 2. Phase space invariant manifolds for the system in Fig. 1. The plane 
~, is an oriented surface. The region shaded within the cylinder W A+ (E) is 
the symplectic area of the cylinder and is equal to the action of the periodic 
orbit r. The "elbow" of the cylinder OJ, (E) has been cut away to reveal the 

underlying foliated structure. The orbit labeled r(E) is the periodic orbit at 
the transition state and thus represents the dividing line between reactants 
and products. 

lie on an invariant cylinder o.J,-B(E) that crosses the barrier 
top, Fig. 1. A continuous set of foliated cylinders o.J-B(E) , 
will exist for reactive motion A ...... B at a total energy E. A 
similar set of foliated invariant cylinders on which reactive 
motion B -> A will lie also exists and will be denoted by 
o'1,-B(E), Fig. 2. 

The set of invariant cylinders 

{0.1, (E),o.~ (E) ,o.J,-B(E).0.1,-B(E) , W J (E), W jf (E)} 

then constitutes the complete phase space structure for this 
uncoupled system. A schematic drawing of the structure of 
the phase space for this situation is given in Fig. 2. The cylin­
ders W J (E) and WI (E) represent the phase space 
boundary between reactive and nonreactive motion. Conse­
quently, they represent the global separatrix to reaction for 
the system. 

Having described the structure of phase space for the 
above uncoupled system, we consider two kinds of perturb a­
tions; (1) a perturbation which couples the two modes and 
(2) a perturbation which bounds the dynamics. We first 
consider bound motion. 

2. Bound motion 

Consider the dynamics between two potential wells sep­
arated by an energy barrier with a simple saddle. Assume 
that the two modes q I and q2 are not coupled. What is the 
structure of phase space in this case? Locally about the sad­
dle point, the potential looks the same as that of the unbound 
system. All invariant manifolds for the bound system must 
have the same local structure as those of the unbound sys­
tem. We can again consider three separate energetic situa­
tions. For EI < Eb the invariant cylinder we previously de­
noted 0.1, (E) will now close to form an invariant torus lo­
cated within conformer A, Fig. 3. For EI > Eb the open 
cylinders 0.1,-B(E) and o.J,-B(E) will close to form an in­
variant torus that spans both conformers, 0.1,B(E) , cf. Fig. 3. 
At EI = Eb the cylinders WI (E) and W A- (E) will close 
upon one another within conformer B, but remain open at 
T(E). A similar situation occurs for conformer B. The re­
sulting invariant manifolds, W A (E) and W B (E) will still 

--------------~~------------------~~ 
q' q, 

Conformer B Conformer A 

FIG. 3. Same as Fig. 2, except for bound motion. The invariant manifolds 
would in this case be associated with the dynamics of conformational iso­
merization. As in Fig. 2, the "ends" of the trapped tori have been cut away 
to reveal the underlying foliated structure. 
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have the geometry of a cylinder-open at the periodic orbit 
reEl, Fig. 3. The cylinders WA (E) and WB(E), will meet 
and be "sewn" together at the periodic orbit reEl. The 
manifold WA (E) U W B (E) has the geometry of a torus, 
however this torus is decomposable since motion on WA will 
never propagate onto WB (i.e., ¢,Zf$.WB , VZEWA and t, ¢, is 
the dynamical propagator). A sketch of the foliated mani­
folds is given in Fig. 3. 

The set of manifolds in Fig. 3 constitutes the complete 
phase space structure for uncoupled two state isomerization. 
The physical interpretation of the phase space structure is 
simple: Reactive motion must lie on invariant tori OJB(E) 

2 

and nonreactive motion must lie on tori OJ
2 
(E) or Of, (E). 

Since the system is uncoupled there is no possibility for inter­
conversion between trapped and reactive motion. The cylin­
ders WA (E) and WB (E) constitute the phase space bound­
ary between reactive and trapped motion. 

C. Poincare maps 

Before proceeding to the situation where the modes are 
coupled it is instructive to discuss the Poincare map struc­
ture for the case of bound motion. To do so we consider the 
following Poincare mapping surfaces 

l:q; = {ZEr,q2 = q~, ±P2}' 

(3) 

where r is the set of phase space points in R 4 phase space 
and q~ is some fixed value of q k' The set of isoenergetic 
points on a Poincare map will be denoted by l:l (E), 

l:q; (E) = l:q; nHE> 

l:q~ (E) = l:q~ nHE , (4) 

where HE is the set of points (ZEr) on the constant energy 
hypersurface H(Z) = E. How will these mapping planes 
slice the invariant manifolds in Fig. 3? The answer is clear, 
l:q~ (E) will slice all the invariant manifolds revealing a 
dense set of concentric closed curves. Each curve is, of 
course, associated with an orbit in H 2 , Fig. 4(b). On the 
other hand l:q: (E) will result in the dense set of closed 
curves shown in Fig. 4(a). Each of these curves is associated 
with an orbit in HI . Note in particular the separatrix in the 
form ofa "figure eight" in Fig. 4(a). The Poincare mapping 

E+ 
q2 

p',...---------, 

q' q, 

(,I 

n1:(E) 

W~(E) 

n~(E) 

E+ 
p, ql 

q. 

(bl 

FIG. 4. Level curves at a total energy E for the two Poincare maps; (all:; 

and l:q~ at a total energy E for the uncoupled bound state system in Fig. 3. 

surface l:q: (E) slices WA (E) U WB (E) along the cylindri­
cal axis resulting in the figure eight pattern. 

D. Coupled motion 

We are now in position to consider perturbations which 
couple the modes. To see how a generic coupling affects the 
phase space structure it is necessary to focus on the periodic 
orbit r(E). This periodic orbit is unstable regardless of the 
nature of the coupling. Stable and unstable manifolds will 
emerge from r(E).60 In general, periodic orbits give rise to 
stable and unstable manifolds which assume one of three 
possible geometries: a simple R I xs I cylinder, a Mobius 
strip or a cylinder with one or more full twists homeomor­
phic to a simple cylinder. 55 Manifolds with the latter two 
geometries will cause nearby orbits to cross reEl in configu­
ration space as they fall away. On the other hand, if the 
manifolds have the geometry of simple cylinders, then near­
by orbits will fall away without recrossing r in configuration 
space. The above described character of nearby orbits to r 
has been previously discussed by Pollak, Pechukas, and 
Child. They have classified periodic orbits in the following 
way: if orbits nearby reEl recross r while falling away, then 
reEl is called "attractive." If nearby orbits do not recross 
reEl as they faIl away then reEl is called "repulsive.,,20 
Thus, if reEl is repulsive, then the stable and unstable mani­
folds generated from reEl will have an R I xS I geometry. 
We will assume that when the modes are coupled reEl con­
tinues to be repulsive.62 

Four cylinders will be generated about r(E): two stable 
W A- (E), W B (E) and two unstable W A+ (E), W; (E). 
The cylinders W f (E) will extend into the phase space of 
conformer A and W f (E) will extend into the phase space of 
conformer B. When the modes are coupled the cylinders 
W A+ (E) and W;; (E) will only partially overlap one an­
other, Fig. 5. Each cylindrical manifold is a two-dimensional 
surface embedded in R 4. Therefore the intersection of two 
cylindrical manifolds will occur along lines. Each of these 

Homoclinic 
Orbit 

------------------~----------------4t> 
q' q, 

Conformer B Conformer A 

FIG. 5. Schematic drawing of two cylindrical manifolds generated from T 

and embedded in phase space, for a generic coupled system. The two dimen­
sional manifolds wiII overlap one another along one dimensional lines. 
These lines correspond to homoclinic orbits to T. The smaIl thin tube span­
ning both conformers corresponds to an invariant torus 01,8(E) that sur­

vives the coupling. The overlap volume is the region of phase space for 
which post reactive motion undergoes direct back reaction. 
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lines must asymptotically approach r(E) along W A+ (E) 

and W .o4- (E). Consequently, these lines must be homoclinic 
orbits, cf. Fig. 5. 

To further understand these cylindrical manifolds with­
in the context of nonlinear dynamics we consider the effect 
of their partial overlap on the observed structure of the Poin­
care maps ~q: and ~q~ in Fig. 4. On ~q: (E) the separatrix, 
which previously was a figure eight, will now be a tangled 
structure resulting from the intersections of W A (E) and 
W} (E) at homoclinic points. The resulting map structure 
is usually referred to as the homoclinic tangle, Fig. 6(a).63 
Note that the homoclinic oscillations must encroach upon 
regions of phase space that, in the uncoupled system, con­
tained invariant tori. Consequently, invariant tori localized 
about the separatrix for the uncoupled system are destroyed 
in the coupled system resulting in dynamical chaos about the 
cylinders WJ (E) and W f (E). A distinct situation arises 
on the ~q~ (E) Poincare map. As the cylinders W l (E) ex­
tend away from r, their initial intersection with ~q~ will 
result in two closed curves which may overlap one another. 
We have referred to these closed curves as "reactive islands" 
(RI).53-55 One can view the interior of the reactive islands as 
forward and backward propagation of the transition state 
phase space onto Poincare mapping planes. However, we do 
not consider this viewpoint particularly useful as it does not 
address the boundary of the reactive island nor does it add to 
our understanding of the nonlinear dynamics. 

The Poincare map ~q~ slices the cylindrical manifolds 
W l (E) along the S 1 topological circuit whereas the map 
~q: slices the cylinders along the transverse R 1 (cylindrical 
axis) topological circuit. Thus, the two Poincare maps in 
Figs. 4 and 6 contain distinct but complementary informa­
tion about the phase space structure. It is interesting to note 
that if the coupling between the two modes is sufficiently 
strong, then it is possible that the map structure on ~q: (E) 

will be discontinuous, that is the stable and unstable 
branches on the Poincare map will break up on the energetic 
periphery (cf. Fig. 4, Ref. 54). The possibility then exists 
that the map structure on ~q~ (E) will contain reactive is­
lands rather than the standard homoclinic tangle.58-6O This 
situation was in fact observed in earlier papers. 53,54 This re-

~+ 
q2 

P, p, 

€/. 
WA(E) 

n~(E) 

WA(E) 

-- I 

q, n1:(E) q, 

Homoc:\inic: 
Tangk la) Ib) 

FIG. 6. Same as Fig. 4 except the two modes are coupled. Note the homo­
clinic tangle in (a). In (b) the reactive islands partially overlap. Note the 
invariant tori, 01,-8, associated with regular reactive motion are located 

within the overlap region between the two reactive islands. 

sult is understood by noting that the cylinders W .o4+ (E) and 
WI (E) can wander away from the mapping plane ~q: be­
fore intersecting it again. 55 

The generic structure of phase space for the bound cou­
pled system at a total energy E can now be constructed. In­
variant tori which reside completely in either side of r(E) 

[Le.,01 (E) and OJB (E)] may exist, however, the measure 
2 2 

of phase space that they consume will depend upon both the 
strength of the coupling and the energy E. Motion on these 
tori will, of course, never cross the barrier. Invariant tori 
which span both conformers may also exist [Le., 01

2

B(E)] 

(cf. Fig. 5). Motion on 011B(E) will periodically cross the 
barrier. There will be a sea of chaos between the above two 
sets of invariant tori. The invariant cylinders W"j-t: (E) and 
W f (E), which are not compact manifolds,64 will wind 
about the chaotic phase space indefinitely-continuously 
deforming and intersecting one another along a denumera­
bly infinite set of homo clinic orbits to r(E), This interweav­
ing of the cylinders in phase space is the phase space homo­
clinic tangle.65 It is within the chaotic phase space visited by 
the cylindrical manifolds W 1 (E) and W; (E) that molec­
ular motion can become trapped, undergo trapped -> reac­
tive motion and back react (recross the dividing surface). 
The manner in which the invariant cylinders overlap one 
another in phase space mediates the chemical reaction dy­
namics. 

E. Phase space symmetry of cylinders 

It is important to point out that the cylinders W A+ (E) 

and W A- (E) are simply related to one another if the Hamil­
tonian dynamics has time reversal symmetry. To make this 
symmetry relation precise we can define the cylinders 
W J (E) as the set of points Z ± er that asymptotically ap­
proach the periodic orbit r(E) in the infinite future or past, 
i.e., 

W .o4- (E) = {Z - :ZEr,H(Z,) = E, 

(Z,~ + 00 ErA) ->r(E)}, 

W .o4+ (E) = {z + :ZEr,H(Z,) = E, 

(Z,~ _ 00 ErA) ->r(E)}. (5) 

Now let Op be the momentum reversal operator, i.e., 
Op (p,q) = ( - p,q). If the dynamics has time reversal sym­
metry then Z - = OpZ +. In other words, the cylinder 
W A (E) may be constructed from the cylinder W A+ (E) by 
taking all points ZEW A+ (E) and reversing the momenta. 

F. Cylinder mediated reaction dynamics 

Having established the generic structure of phase space 
associated with coupled two state isomerization, we can use 
this insight to understand the reaction dynamics. Consider 
the cylinders W A+ (E) and W A- (E) locally about the peri­
odic orbit r(E), Fig. 7(a). Motion on the cylinder W A- (E) 
will asymptotically approach r(E) but, of course, never 
quite reach it. Motion just exterior to W A (E) will also ap­
proach r but will eventually fall back within conformer A. 
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A 

Conformer B Conformer A 

B 

WH(E) 

Conformer B Conformer A 

FIG. 7. Cylindrical manifolds embedded in phase space. In (A) motion 
local to Tis shown. In (B) the cylinders are seen to extend away from Tand 
thus are a global separatrix to reaction. The curve entering and exiting the 
cylinders represents a trajectory undergoing reaction. 

On the other hand, motion just interior to W A- (E) will ap­
proach r(E) and eventually react onto conformer B. There­
fore, all reactive motion A -- B must pass through the interior 
of W A- (E). On the other hand all reactive motion B --A will 
pass through the interior of W Ii (E). 

The conclusions above are not restricted to motion local 
to r(E). All motion on W A- (E) will asymptotically ap­
proach r(E). Consequently the cylinder W A- (E) will serve 
as a global separatrix between "trapped" and reactive mo­
tion, Fig. 7(b).66 The cylinder W A (E) has the important 
physical property of mediating all pre-reactive motion A --B. 
Similarly, W Ii (E) has the physical property of mediating 
pre-reactive motion B--A. On the other hand, due to time 
symmetry, W A+ (E) mediates post-reactive motion (Le., mo­
tion which has just reacted) fromB ..... A and W: (E) medi­
ates post-reactive motion A --B respectively. Therefore, the 
four cylinders W J (E) and W f (E) mediate all pre- and 
post-reactive motion. These pre- and post-reactive cylinders 
can be numerically generated for specific Hamiltonian sys­
tems. In Fig. 8 we show a set of pre- and post-reactive cylin­
ders and a trajectory generated for a particular Hamiltonian 
system representing conformational isomerization.54,55 The 
trajectory in Fig. 8 reacts from conformer A onto conformer 
B. Note how this trajectory enters the interior of W A (E) 
prior to reacting, winds about within W A- (E) and finally 
reacts through W: (E). 

All of the conclusions above are exact. Our objective is 
now to use the properties of the phase space manifolds to 
construct a kinetic theory of isomerization. The develop­
ment of this kinetic theory is the subject of the rest of this 
paper. 

Conformer B Conformer A 

FIG. 8. A numerical reconstruction of the W A- (E) and W; (E) cylindri­
cal manifolds in the (Q"Q2,P2) axis and H = E. All dynamics is within the 
energetic boundary ("basket") for a two degree of freedom Hamiltonian 
with highly coupled modes (Ref. 56). The calculation is at a total energy 
slightly above the barrier. Included in the figure is a numerically generated 
trajectory that is initially trapped in conformer A and eventually enters the 
interior of the cylinder W A- (E) and thus reacts. Upon reaction the trajec­
tory enters W; (E). 

III. THE n-MAP AND REACTIVE ISLAND MEDIATED 
REACTION DYNAMICS 

A. Two state dynamics 

In two previous papers we considered reactive islands 
on a ~q~ Poincare map and developed a kinetic theory based 
upon on those maps. However, further work and the realiza­
tion of the existence of the cylindrical manifolds has revealed 
that a more general kinetic theory can be developed based 
upon the map dynamics between mUltiple mapping surfaces 
we will call the n-map. 

The existence of the W': (E) and W A (E) cylindrical 
manifolds and the property that they precisely mediate the 
reaction dynamics suggests that an accurate kinetic theory 
based upon these manifolds should be possible. Our goal in 
this section is to develop the necessary concepts to construct 
such a theory for two state conformational isomerization. 
With the concepts developed, the extension to more general 
cases (Le., multiple conformational states) is straightfor­
ward (Sec. IV B). 

Conventionally, one would view the relaxation of an ini­
tial nonequilibrium population distribution as a continuous 
function oftime. A temporal kinetic theory of the relaxation 
process would naturally emerge. However, the properties of 
the phase space cylinders can most simply be exploited by 
conducting what we n-map rather than temporal dynamics. 

Consider a system with two conformational states A and 
B for which we define two Poincare maps as ~.: = ~ + 

q, >qt 

and~1i =~q~<qt [cf.Eq. (3)].Thesurfaces~': and~B 
are oriented maps consisting of the bath coordinate and mo­
mentum (qz,pz). Figure 6(b) is a typical example of the 
initial encounter of W J (E) with ~A+ • 
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,. State A bound, state B unbound 

Weare now in position to describe the details of the 
microcanonical reaction dynamics and cylinder mediated 
kinetics. To make the forthcoming discussion as simple as 
possible, let us assume that state B is unbound and the cylin­
ders W f (E) do not overlap one another (i.e.,motionA-B 
never returns). This assumption will simplify the forthcom­
ing discussion as we will not have to be concerned with re­
crossing motion from state B. We will relax this condition 
later. Also, let us assume that invariant tori 01

2 
(E) are ab­

sent. 
Intra- and inter-mappings of a point ZE(I.A+ or I.E) 

will occur between these two Poincare surfaces. The dynam­
ics between the two surfaces is then the map analogue to the 
temporal dynamics. The "map dynamics" is determined in 
the following manner: A point ZEI. J , together with the to­
tal energy, uniquely specifies a trajectory. Hamilton's equa­
tions of motion allow us to propagate Z: if Z, propagates 
back onto I.,t then we know that during the course of its 
evolution Z, did not cross the dividing surface. (If Z, had 
crossed the dividing surface at qt, then it must enter the 
interior of W; (E) and, in this case, never return.) The 
propagation of Z can be continued indefinitely. If Z, maps 
onto I.,4+ , then it is propagated once again. In this manner Z, 
is propagated on I. J until it crosses the dividing surface and 
maps onto I.E' Such a sequence of mappings between I.A+ 

and I.E is an example of2-map dynamics. 
Somewhat more formally, the 2-map dynamics is de­

fined by the mapping U:(I.,4+ ,I.i) - (I. A+ ,I.i) and time 
"t" is replaced by map iteration "p" generated by U. Since 
the mapping Uis generated by Hamilton's equations ofmo­
tion then its inverse inverse U - 1, i.e., negative time dynam­
ics, is well defined. The mapping sequence of a single trajec­
tory Z, beginning on I.,4+ will consist of K z mappings U onto 
I.,4+ . K z is then the "lifetime" of Z in state A. 

The single point dynamics discussed above is easily ex­
tended to include an ensemble of M points ZjEI.J, 
j = 1,2, ... ,M. Given such an ensemble there will be M map­
ping sequences within I. A+ , thejth sequence consisting of Kj 

mappings onto I.,t . In this way one can count the number of 
points Z that remain in I.,4+ after the pth map iteration UP of 
the ensemble. This number is then the population decay of 
state A as a function of p. The resulting population decay can 
be structured (i.e., not be a simple exponential decay) and is 
closely related to its temporal analogue. The structure and 
decay rate of the 2-map population decay can be understood 
and kinetically modeled with the cylindrical manifolds 
W J (E) and the manner in which they overlap with one 
another in phase space. 

To develop the kinetic model we focus on the details of 
how a point ZEI.,4+ becomes reactive. Previously we have 
noted that if motion is to react from state A to state B it must 
do so through the cylinder W A- (E). The intersection of 
Wi (E) with I.,4+ generates a reactive island whose area is 
equal to the action,J,. (E), of the periodic orbit "T(E). Let the 
set of points Z within the reactive island bounded by this 
curve be denoted by II;, then 

(6) 

The reactive island IIi contains the complete set of pre­
reactive points within I. J (E), i.e., all points within I. A+ (E) 

that react in the next mapping U must be a member of IIi. 
An obvious consequence is that a point ZEI.A+ (E) cannot 
react unless it first maps onto IIi. Similarly, the cylinder 
W J (E) will form a closed curve upon extension onto 
I. A+ (E). Let the set of points Z within this reactive island be 
denoted by IIA+ , then 

IIJ = {Z:ZEI.,t (E),U -IZEI.i (E)}. (7) 

Points ZEII A+ consist ofthe complete set of points ZEI. A+ (E) 
that are post-reactive. The preimage of all points ZEII,t 
must lie on I.i (E) [i.e., U -IZE~i (E), VZEIIA+]' 

It is possible for the sets IIA and II,t to have no points 
in common, i.e., I1 A- nIIA+ = 0. However, let us first con­
sider the situation where I1A nIU #0, cf. Fig. 6(b). We 
will denote this common overlap region as IIA , 

IIA = IIA+ nIlA-

(8) 

Therefore IIA contains the complete set of points in I. A+ (E) 

that have just reacted from state Band arejust about to react 
onto state B (i.e., the complete set of points in I. A+ (E) that 
are both pre- and post-reactive). A post-reactive trajectory 
Z, mapping onto the overlap region IIA will map onto 
I.A+ (E) only once before recrossing the dividing surface­
we will refer to such motion as direct back reaction. The 
fraction of motion which will undergo direct back reaction is 
easily obtained. Let Area ( ... ) denote the symplectic area of 
the set ("'). Then the fraction of post-reactive motion from 
state B that will undergo direct back reaction is given by [see 
Fig. 6(b)], 

Fraction of pos~-reac~ive Area(II
A

) 
motion undergomg dIrect = ----
back reaction J,. (E) 

(9) 

IfIlA = 0, then direct back reaction is not dynamically 
possible. In this case the cylinders W 1 (E) will continue to 
evolve within the phase space of the conformer A and inter­
sect ~A+ (E) again-generating another set of reactive is­
lands. A schematic depiction of one possible configuration of 
these reactive islands on I.J (E) is shown in Fig. 9. Let the 
reactive islands so generated on ~A+ (E) be denoted by IIIA+ 
and I1IA- . The reactive islands III} contain the complete set 
of points that will react in two and only two backward or 
forward map iterations U, respectively, 

IIIA+ = {Z:ZE~A+ (E),U -IZEIIA+} 

= U(IIJ), 

I1IA- = {Z:ZEl:,t (E),UZEIIA } 

= U -1(I1A ). (10) 

Therefore, reactive islands I1IA- and I1A+ are the preimages 
ofIIA- and III:. If IliA = I1IA+ nIIA- #0 (cf. Fig. 9), then 
the simplest route to back reaction will consist of a post­
reactive trajectory undergoing two map iterations in 
I l (E), cf. Fig. 9. In this particular case, 
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lIlt = U (lIt) 
II; = U (III~) 

FIG. 9. Schematic of the reactive islands generated on the conformer A map 
l: A+ for primary-2 back reaction. The symplectic area associated with each 
reactive island is equal to J T (E). 

Fraction of post-reactive 
motion undergoing two map 
iterations prior to 
back reaction 

Area(IIIA) 

Jr(E) 
(11 ) 

Clearly, the above can be generalized: If IlIA = 0 then 
reactive islands IV} will be generated by the cylinders. If 
IV A = IV A+ n IV A- :;1=0 then the simplest pathway for post­
reactive motion to back react will consist of three map itera­
tions on ~} (E). To generalize: if the simplest pathway to 
back reaction consists of Fmappings on~} (E) then we will 
call this route to back reaction "primary-F" back reaction. 
There will be 2Freactive islands on ~A+ (E) whose symplec­
tic area is equal to J r (E) and are denoted by 
II} ,III} , ... , (F + 1) l' . The overlap region between 
(F + 1) A+ and IIA- is denoted by (F + 1) A' Then, 

Fraction of post-reactive 
. Area«F+ I)A) 

motion which undergoes pnmary-F = ------­
Jr(E) back reaction 

(12) 

The discussion above has focused on the simplest route 
to back reaction. However, a detailed account of the reaction 
dynamics must be able to account for more complex back 
reactive pathways. Note that the overlap region associated 
with primary-Fback reaction is bounded by homoclinic or­
bits. A denumerable but infinite set of homo clinic orbits ex­
ists thus implying an infinity of higher order pathways to 
back reaction. To see how these pathways may be accounted 
for, consider a situation where the overlap IIA :;1=0. We de­
compose II} into the union of the overlap region IIA and its 
complement IIA+, i.e., IIA+ = IIA+ - IIA, cf. Fig. 10. Points 

it += IIA +- IIA 

IliA + = U(it +) 

FIG. 10. Same as Fig. 9 except for primary-l back reaction. Note that the 
mapping of the reactive island IIA+ forms the reactive island IIIA+ but whose 
symplectic area is less than JT(E) by Area(IIA ). 

ZEII} must map onto ~} (E) for at least one additional 
mapping U. The symplectic area oflIA+ must be preserved 
upon the mapping U, i.e., Area( U(iI}» = AreacIIA+). 
Consistent with the previous notation, let U(IIA+) be de­
noted as IIIA+ . IIIA+ is still a reactive island, albeit one whose 
symplectic area is equal to Jr(E) - Area(IIA). As before 
we let lIlA be the overlap region between IIIA+ and IIA- , 
IlIA = IIIA+ nllA- . The solutions to Hamiltons' equations 
of motion are unique thus requiring IlIA n IIA = 0. Assum­
ing that IlIA :;1=0 then IlIA is the region within IIi associat­
ed with secondary back reaction, i.e., the next most simple 
pathway to back reaction (in the present case of primary-l 
back reaction, this would consist of two map iterations in 
~}). Then, 

Fraction of post-reactive motion A III) 
. rea ( A 

which undergoes secondary back = ----­
reaction for a primary-l system 
Equivalently, 

Jr(E) 

Fraction of post-reactive 
motion not undergoing 
primary-l back reaction 
but undergoing 
secondary back reaction 

Area(IIIA) 

(13) 

(14) 

The above analysis can be extended in a straightforward 
manner to obtain all higher order back reactive pathways 
and their respective fractions: The reactive island IIIA+ 
would be decomposed into IliA and its complement III} . 
The region iIIA+ must map once again onto ~A+ (E) forming 
the reactive island IV A+ and the overlap regions IVA' The 
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overlap IV A then contains within it the next most complex 
back reactive route, etc .. Carried out indefinitely, this proce­
dure will generate overlap regions with IIA- which are de­
noted by I1A' IlIA, IV A, ... • These subregions quantify the 
fractional hierarchy of direct, secondary, tertiary, etc. back 
reaction. Let S 1 be the ordered set of overlap regions with 
II~- at a total energy E, 

s;i = {MA = IIA- nM A+ ,M= II,III, .. .}. (15) 

Then S 1 is the complete set of overlaps for back reaction 
from state A. This set is infinite but denumerable. It must 
also be true that, the sum of the symplectic areas of the 
members of S: must equal the action of the periodic orbit 1", 

'" 
Jr(E) = I Area(MA )· (16) 

M=lI 

Thus, any trajectory within state A that eventually reacts 
onto state B can be viewed as a back reactor to some order. 

2. States A and B bound 

The discussion and results in the above subsection are 
applicable to systems with one bound and one unbound 
state, e.g., H + Cl2 (v) -> (H" 'Cl2 ) ..... C12 (v') + H. How­
ever, our objective in this paper is to focus on the dynamics of 
conformational isomerization. Hence we now extend the dis­
cussion to the case where state B represent a bound conform­
er. 

The generalization of the 2-map dynamics to include 
back reaction from conformer B is straightforward. Reactive 
islands generated by the initial extensions of W; (E) and 
Wi (E) on ~i will also have a symplectic area equal to 
J r (E). The nature of both pre- and post-reactive motion in 
conformer B are the same as for conformer A. In particular 
motion cannot react from state B onto state A unless it enters 
the interior of the cylinder Wi (E). Also post-reactive mo­
tion from conformer A must proceed through Wit (E). The 
structure on the ~ i map will take on similar characteristics 
as the map structure on ~A+ • Following the convention for 
denoting reactive islands and overlap regions discussed for 
conformer A, we denote the reactive islands in ~i (E) as 
II;, III;, etc. and the overlap regions with IIi as lIB, 
III B , ... with an obvious definition for the set S~ [cf. Eq. 
( 15) J. 

In Fig. II we schematically display the 2-map dynamics 
for a symmetric two state system. All back reactive path­
ways can be quantified using the RI model above. In particu­
lar the fraction of motion undergoing each back reactive 
pathway from either conformer A or conformer B is precise­
ly determined. Such detailed knowledge of the reaction dy­
namics will allow the construction of an accurate kinetic 
theory-which is the focus of the following section. 

IV. REACTIVE ISLAND (RI) KINETIC THEORY 

A. Two state conformational isomerization 

In principle, an accurate microcanonical kinetic theory 
of two state isomerization should explicitly consider back 
reaction to all orders. However, since the sets S! and S ~ are 
infinite, such a detailed kinetic theory is not practical, indeed 

FIG. II. Schematic drawing of 2-map dynamics for primary-I (direct) 
back reaction. The sketch is in the same axis as that of Fig. 8. The curve 
winding through the figure represents a trajectory undergoing reaction. 

not even necessary. Instead, a kinetic model based upon re­
active islands is developed which explicitly includes back 
reaction for the first several members of S ~ and S ~ and the 
rest of the dynamics is treated as trapped~reactive motion. 

1. Direct back reaction 

A model which includes direct back reaction and trap­
ped~reactive motion is the simplest 2-map RI kinetic mod­
el. Such a situation would result from the 2-map reactive 
island structure in Fig. 12. The mapping surfaces ~A+ (E) 

and l:;; (E) are decomposed into the following subregions: 
~A+ (E) is subdivided into II A- and IA- , where is IA- is the 
complement to the reactive island 11;- , 
IA- = ~A+ (E) - II A-. Similar subregions are defined for 
state B. Assuming that all points ZE~A+ (E) can undergo 
reaction, then a point ZEIA- must first map into 11;- prior to 
reaction. (It is important to remember that a point ZeI;­
cannot map onto IIA C 11;- .) A symbolic representation of 

I~ 1::(E) - II~ 

I~ 1:~(E) - II~ 

FIG. 12. 2-map reactive island structure for the RI kinetic model which 
includes only primary-l back reaction. Shaded region of the map is associat­
ed with "trapped" chaotic motion. 
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the mapping is given by the following simple diagram: 

lIB --+ IA 

1-
B 

1 (17) 

where each arrow denotes a mapping U. In this mapping 
sequence the regions IA- and Ii are interpreted as those 
regions in ~I (E) and ~i (E) associated with trapped (i.e., 
not pre-reactive) motion. The diagram is read in the follow­
ing way: A point ZEIA- will map either back onto I A- or IIA-

(i.e., UZEIA- or IIA-). In the former case UZ will remain 
trapped in ~A+ (E), and in the latter case UZ will become 
pre-reactive. If UZEIIA- then UZ will react upon the next 
mapping U, (U( UZ)EII;). If U2ZEIi then it will be 
trapped within conformer B until it maps onto IIi. On the 
other hand, if U 2ZEIIo then it will again be pre-reactive. 

A kinetic theory may be developed using the diagram 
above. To do so it is necessary to determine not only the 
mapping sequences, as given by the diagram, but one must 
also have a way of deciding where a point Z will map. For 
example, it is necessary to have some way of determining 
whether a ZEIIA- will map onto either Ii or IIi. This may 
be accomplished by invoking a statistical model, which cor­
responds to the following approximation: In Sec. III A we 
discussed the various fractions for back reactive motion. We 
use these fractions to construct a statistical kinetic theory by 
using the following fundamental assumption: The map dy­
namics generated by the mapping U is statistical. By this 
statement we mean that the probability of a point Z mapping 
onto a subregion is equal to the fraction of motion mapping 
onto that subregion. In other words we assume that there are 
no internal dynamical correlations other than those required 
by the mapping sequences of reactive islands and area pres­
ervation. Similar statistical approximations to the dynamics 
have their precedent in the literature.41 ,46.S1,67 Hence, within 
this approximation the mapping of a point Z will be probabi­
listic, depending only upon the relative areas of the subre­
gions within the 2-map. Probability labels can now be placed 
on the mapping sequence in the diagram to give an RI kinetic 
mechanism, 

11- Qt 1-
B --+ A 

P/RI p{'~:;;,P1B Ip;R 
(18) 

1- ~ lI-B Qf' A 

The probability of a pre-reactive trajectory from state B un­
dergoing direct back reaction is P1 and the probability of it 
getting trapped (i.e., mapping onto IA- ) is Q 1 = 1 - P 1. 
These probabilities are given by [cf. Eq. (9)] 

pA _ Area(IIA ) 
1 - JT(E) 

A JT(E) - Area(IIA) 
QI = JT(E) . 

(19) 

The probability for a point ZEIA- to map onto IIA- (i.e., for 
trapped motion to become reactive) is P 1-R . This probability 
is given by 

A JT (E) - Area(IIA ) 
p TR = , (20) 

Area(lA- ) 

where Area (lA- ) = Area(~A+ (E» - J
T 
(E). Similar equa­

tions hold for pf, Q f, and P~R' 
With the kinetic mechanism and probabilities at hand, it 

is now simple to write down the associated kinetic equations. 
To do so we let the population of the subregion G upon the 
pth mapping Ube denoted by G(p) [G(O) denotes initial 
populations], then 

IIA- (p) = P1-RIA- (p - 1) + P1IIi (p - 1), 

IA- (p) = Q1-RIA- (p - 1) + Q1IIs (p - 1), 

IIi (p) = P~Rli (p - 1) + PfIIA- (p - 1), 

Ii(P) =Q~RIs(p-l) +QfIIA-(p-l), (21) 

where Q1-R = 1 - P1-R' etc. This set of linearly coupled 
equations can be readily solved, cf. Sec. V. 

The statistical approximation used above is, of course, 
an approximation to the true dynamics. Individual trajector­
ies can be much more correlated with one another than as­
sumed in this approximation--even if the dynamics is chao­
tic. However, from the perspective of an ensemble of 
trajectories, the statistical approximation appears to be, in 
most cases, excellent. In particular, non-RRKM effects can 
be accounted for and understood within the RI framework 
and the statistical approximation. 

2. Direct + secondary back reaction 

The kinetic model above includes only direct back reac­
tion. It may, or may not be an accurate description of the 
reaction dynamics for a given Hamiltonian system at energy 
E. For example, it may turn out that secondary as well as 
primary back reaction from conformer A contributes signifi­
cantly to the microcanonical reaction dynamics. The 2-map 
reactive island structure in Fig. 13 would yield a kinetic 
model which includes direct and secondary back reaction 

IA L~(E) - II~ - II! 

I~ L~(E) - lIB 

FIG. 13. 2-map reactive island structure for the RI kinetic model which 
includes primary-1 back reaction from conformer Band primary-l plus sec­
ondary back reaction from conformer A. Shaded region of the map is asso­
ciated with "trapped" chaotic motion. 
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from conformer A and only direct back reaction from con­
former B. The kinetic mechanism is obtained by subdividing 
the map 2.A+ (E) into the regions IIA+ and IIA- and the com­
plement subregion IA- = 2.A+ (E) - IIA- - IIA+ .68 Using 
the ideas developed in Sec. III A 1 and invoking the statisti­
cal approximation, the kinetic mechanism is now given by 

Q1 Qt 
IIi - IJ+ - 1-A A 

P~Rt pt\,. ,-Pf p A -.-J (22) 2 

1- - II,; B 
Qf P'fR 

The probabilities P t, P ~R' etc. have been previously dis­
cussed and given in Eqs. (19) and (20). The probabilities P1 
and PfR are given by 

A Area( IlIA) 
P 2 = , 

J r (E) - Area(IIA ) 

A Jr(E) - Area(IIA) - Area(IIIA) (23) 
P TR = , 

Area(l; ) 

where Area(lA- ) = Area(2.A+ (E» - 2Jr (E) + Area(I1A ) 
and Q1 = 1 - p1.69 The associated kinetic equations are 
easily constructed and are given by 

I1A- (p) = PfRI'; (p - 1) + ptIli (p - 1) 

+ PtIIA+ (p - 1), 

II} (p) = QtIIi (p - 1), 

I; (p) = QfRI; (p - 1) + Q1IIA+ (p - 1), 

I1i(p) =P~Rli(P-l) +pfIlA-(p-l), 

Ii (p) = Q~RIi (p - 1) + QfIl'; (p - 1). (24) 

As before, these are a set of linearly coupled kinetic equa­
tions. This particular kinetic mechanism would only be con­
sidered for a molecular system where the two conformers are 
not equivalent. The same methods may be used to generalize 
the reactive island kinetic model to include any number of 
back reactions from conformers A and B. 

3. Primary-2 back reaction 

To this point, our discussion ofthe RI kinetic model has 
focused on systems that admit primary-l (direct) back reac­
tion. However, it is possible to encounter isomerization dy­
namics that does not admit primary-l back reaction. Such a 
situation is not only possible but even likely at low excess 
energies. For example, consider the reactive island structure 
in Fig. 14. For this system direct back reaction from state B is 
possible, however direct back reaction from state A is not 
possible because III nIIA- = 0. Note that III; and IIA+ 

are preimages ofIIA- and IIIA+, respectively, 

U(IIIA-) = I1A-, 

U( I1A+ ) = IIIA+ . (25) 

The preimage of the overlap IlIA is 
I11~ ( = IIA+ n I1IA- ), i.e., U(lII~) = IlIA' Since IIA = 0, 
there is no primary-l back reaction and the overlap region 
III A is associated with primary-2 back reaction. There is also 

I~ L~(E) - II~ - I1~ 

Iii L~(E) - IIjj 
FIG. 14. Same as in Fig. 13, except the reactive island structure for con­
former A admits primary-2 plus secondary back reaction (cf. Fig. 9). How­
ever, the kinetic mechanism discussed in the text [cf. Eq. (26) I ignores 
secondary back reaction (i.e., ignores the overlap region IV ~ ). 

an overlap region IV~ = I1IA+ nIIIA- . This overlap region is 
associated with secondary back reaction because of the fol­
lowing consideration: A point ZEIIB will map onto IIA+ , 

whereupon it will map onto IIIA+ . If at this juncture Z lies 
within IlIA C II A- then Z will be pre-reactive (primary-2 
back reaction), but if Z lies within IV~ CIII; then 
U(lV~) CII; and will thus become pre-reactive upon the 
next mapping U, i.e., the next most simple pathway to back 
reaction-secondary back reaction. The simplest RI kinetic 
model for this system would ignore secondary and higher 
order back reactive pathways. The kinetic mechanism is 
then written as 

11- 11+ Qt 1---+ --+ B A A 

PIn! '..pf lpt ~ (26) 

I- +--- lI-
B 

Q~ A p. .... 
Tn. 

where we use the convention that if an arrow does not have a 
probability label then the probability for that event is unity. 
The region IA- is given by IA- = ~A+ (E) - IIA+ - IIA- (cf. 
Fig. 14). The various probabilities are determined by Eqs. 
( 19) and (20), and their conformer B counterparts. The area 
of I A- is now given by Area(l; ) 
= Area(~A+ (E» - 2Jr (E). The kinetic equations are 

II,; (p) = P'fRIA- (p - 1) + P1IIA+ (p - 1), 

I" (p) = QfRIA- (p - 1) + Q1I1A+ (p - 1), 

IIA+ (p) = lIB (p - 1), 

lIB (p) = P~RIB (p - 1) + pflIA- (p - 1), 

IB (p) = Q~RIB (p - 1) + QfIIA- (p - 1). (27) 

The ideas presented above can, in a straightforward way, be 
extended to obtain a kinetic mechanism for any primary-F 
back reaction and any explicit number of back reactions. In 
the following section we discuss the generalization ofRI ki­
netic theory to molecular systems undergoing unimolecular 
isomerization to multiple states. 
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B. Multi-state conformational isomerization 

Once the basic concepts of the two state RI kinetic mod­
el are understood, their extension to include any number of 
conformational states is reasonably straightforward. As an 
example, consider the situation of three conformational 
states accessible at an excess energy !l.E. These states may 
correspond to a trans-gauche-trans isomerization of n-bu­
tane, or perhaps the isomerization of stilbene in its first excit­
ed electronic state.7

0-
72 

The discussion below will focus on the symmetric three 
state system in Fig. 15.73 The reaction from one conforma­
tional state to another adjacent conformational state occurs 
over a potential energy barrier with a simple saddle, cf. Fig. 
15. We assume that all periodic orbits r about the saddle 
generate cylindrical manifolds. Two periodic orbits, one 
along each saddle of the potential, exist. Each periodic orbit, 
rand r', will generate four phase space cylinders (cf. Fig. 7). 
The manner in which these cylinders overlap one another 
will determine the precise nature of the isomerization dy­
namics between the three conformers. Cylinders arising 
from the same periodic orbit will intersect one another along 
homoclinic orbits whereas cylinders arising from different 
periodic orbits will intersect one another along heteroclinic 
orbits. The manner in which the cylinders overlap one an­
other will be quite complicated but can be unraveled using 
the same methods discussed for the two state system. 

It is important for the n-map dynamics to capture all 
possible reactive motion. For the three state system under 

FIG. 15. Potential for three bound state confonnational isomerization. 
Top: potential along reaction coordinate; bottom: potential contours. 

consideration a 4-map will accomplish this goal. Let the di­
viding surface between conformers A and B' be at q~B' and 
the dividing surface between conformers A and B be at q~B' 
We define the four maps as [cf. Eq. (4)], 

I.; = I.q~, ql >q~B 

I.;t = I.q~, q~B' <ql <q~B 

I.A = I.q~, q~B' <ql <q~B 

I.jJ, = I.q~, ql <q~B" (28) 

The dynamics generated by the mapping U between these 
four Poincare maps constitutes the 4-map dynamics. The 
construction of the RI kinetic model can now be accom­
plished using the concepts developed for the 2-map dynam­
ics and kinetics. 

Multi-state dynamics differs from the two state dynamics 
in that a hierarchy of through reactive pathways (B' -->A-->B) 
as well as back (B' -->A -B ') pathways are possible and must 
be accounted for in a kinetic model. A 4-map RI structure 
which admits both direct through and direct back reaction is 
given in Fig. 16. The various reactive islands are labeled in this 
figure using the same definitions as developed for the two state 
model. Reactive islands with a SUbscript B' are generated 
from the cylinders originating at the barrier top about q~B" It 
should be noted that since direct through reaction is possible, 
then the area of IIIA+B is equal to J.,. (E) minus the flux asso­
ciated with direct through reaction [Le., Area(I1AB ,)]. 

The kinetic mechanism corresponding to this 4-map RI 
structure as well as probabilities not explicitly discussed ear­
lier are given in Fig. 17. While the mechanism for three state 
isomerization may appear more complex than for the two 
state case, in practice the distinction is purely technical; the 
basic concepts used to construct the model are the same. 

FIG. 16. A 4-map reactive island structure for the three state system in Fig. 
15. This reactive island structure allows direct back reaction from confonners 
A, B, and B'. Direct through reaction is also allowed by this 4-map structure. 
The kinetic mechanism in Fig. 17 assumes that the shaded regions IA ( ± ) 
are associated with chaotic trapped motion. These regions are given by 
I A- ( + ) = !.A+ (E) - IIA-B - IIA+B · + lIAB , 

IA- ( - ) = !.A- (E) -IIAB · - IIA+B + lIAB" 
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, 
, 
: p/BAB' 

Jl. AB·i t P AB' Q BAB _ , BAB.I 

B.
I
I;',7::AB.! ItI~:,~, TRQ AB~t""t(Q+) A: 1 P BA:tI!By." i QI Ill; B 

PTR : PI TR TR I 'AB PTR 
: :p/ , , 

n;. B'AB!" fiZB, B'AB~ 1,,"(.) AS .. n~B : ,Ilr I; 
Q/ 1 Q/ PTR • iQ/ 

, p/'AB - i 
B' A B 

B'AB 
PI -

P B'AB' 
I -

P AB _ 
TR 

FIG. 17. RI kinetic mechanism derived from the 4-map reactive island 
structure in Fig. 16. 

The symmetric three state case discussed above is only 
an example of RI theory as applied to multiple conformers. 
Certain technical details such as the precise placement of the 
n mapping planes or even their definitions may vary for dif­
ferent molecular systems, but the fundamental notion that 
the cylindrical manifolds mediate conformational isomeri­
zation dynamics is generic. 

In the following subsection we briefly consider a limit­
ing case of the 2-map kinetic model which considers all mo­
tion as trapped~reactive. 

C. Purely random 2-map kinetic model 

As presented above, implementation of the RI n-map 
kinetic model requires information about overlaps between 
reactive islands. In this manner one can take into explicit 
account individual pathways to back reaction. However, one 
can imagine a kinetic model that treats all back reactive 
pathways on an equal footing-thus requiring a minimum of 
input for the kinetic model. We will call such a model the 
purely random n-map kinetic model. The advantage of this 
model is, of course, that it does not require any detailed in­
formation about the reactive island structure other than the 
symplectic area J

T 
(E). 

The purely random model assumes that the probability 
ofa point ZE2.A+ undergoing reaction upon a mapping Uis 
completely uncorrelated to its past or future. 74 Thus, in the 
purely random model there is only one probability to consid­
er for each state, PA _B and P B-A' It can be shown that the 
purely random model goes over to the standard transition 
state theory in the limit that the probabilities PA - B and 

PB - A are much less than unity.75 The kinetic mechanism for 
the purely random model is 

(29) 

where 

JT(E) 
P

B
_

A 
= , 

Area(2.B (E» 

P
A

-
B 

= JT(E) 
Area(2.l (E» 

(30) 

If we let 2.A+ (p) and 2.B (p) denote the popUlation within 
conformers A and B at the pth map iteration UP, respectively, 
then the corresponding set of 2-map kinetic equations are 

2.A+ (p) = QA_B2.A+ (p - 1) + PB _ A 2.B (p - 1), 

2.i(p) =PA_ B2.i(p-l) +QB_A2.A+(p-l), (31) 

where the energy dependence of the populations has been left 
out for notational convenience. 

D. Regular motion 

We have considered the situation when every point Z is 
capable of both reacting and also becoming trapped, i.e., all 
of the dynamics is chaotic. However, both trapped and reac­
tive regular motion can coexist with chaotic motion. Includ­
ing the effects of regular motion on the reaction dynamics 
and RI kinetic theory is not difficult and is left for the appen­
dix. In the following section we discuss the solution to the 
reactive island kinetic equations and focusing on the calcula­
tion of the reaction decay rate. 

V. SOLUTION OF THE RI KINETIC EQUATIONS AND 
DECAY RATES 

The set of linear RI kinetic equations can be solved by 
matrix methods which are, more or less, standard. Moreover, 
the solutions allow one to determine the relaxation rate for the 
reaction. To cast the equations in matrix form let N be the 
column vector of all subpopulations. Furthermore, let com­
ponents ofN be ordered such that the first K A components are 
the subpopulations for conformer A, the next K B components 
are the subpopulations within conformer B, etc. The vector 
N (p) is then the column vector of all subpopulations upon the 
pth mapping and N (0) represents the vector ofinitial popula­
tions. Let e be the real square matrix of probabilities that 
propagates N (p) upon one mapping U, 

N(p + 1) = eN(p). (32) 

Then, 

N(p) = E>PN(O). (33) 

Now, let 11 be the matrix of eigenvectors which diagonalizes 
e. We denote the diagonal matrix of eigenvalues ..1. 1 ,..1.2 "" as 
A. The matrix e is real but not symmetric. Therefore, both 
the the eigenvectors and eigenvalues may be complex. One 
can write Eq. (33) as 

11- IN(p) = API1- I N(O). (34) 

Ifwe denote 11- IN(p) by R(p), then Eq. (34) is writ­

ten as R(p) = APR(O). The eigenvector matrix A is in gen-
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eral asymmetric and complex. In Ref. 45 we have shown 
how tJ. - I may be obtained through 0 and its transpose. 

It is not difficult to show that the population of con­
former A upon the pth mapping UP is given by 

KTOT 

A(p) = L ajAf, (35) 
j=1 

where KTOT is the total number of components in N. The 
coefficients aj are expansion coefficients given by 

KA 

aj = Rj (0) L tJ.mj , 
m=O 

(36) 

where Rj (0) is thejth component ofR(O). Let us order the 
eigenvalues such that eigenvalues 1 to Kr are real and the rest 
are complex. Furthermore there will always be a unit eigen­
value, which just corresponds to conservation of total popu­
lation; let this eigenvalue be AI' It is then straightforward to 
show that 

K" KTOT-l 

A(p) = a l + L ajSfe-kl' + 2 L' [Re(a) cos(1]jP) 
j= 2 j=K,+ I 

- Im(aj ) sine 1]jp)] e - kl', (37) 

where Sj = ± 1 depending upon whether Aj is positive or 
negative, 1]j is the phase of the complex eigenvalue Aj and the 
prime on the summation denotes a sum over indicies 
Kr + I,Kr + 3, ... ,KTOT - 1. Note that aj is real for 
j = 1,2, ... ,Kr and otherwise complex. The quantity kj is in­
terpreted as an exponential decay "rate" for the population 
Rj , i.e., Rj(p) = e-kI'Rj(O) [cf. Eq. (34)], and is given by 

kj = -In(IAjl). (38) 

Equation (37) will yield the population of conformer A 
as a function of map iterationp. The detailed structure of the 
decay will clearly depend upon the initial popUlation N(O). 
Note that N(O) discretizes the popUlation. This leads us to 
an important point: The RI kinetic model divides the n-map 
into subregions. The dynamical flow between these subre­
gions is guided by the RI kinetic equations. Thus, RI kinetic 
theory is a coarse grained representation of both the reaction 
dynamics and populations. 

The decay rate for the overall reaction is obtained from 
the following purely qualitative considerations: Let us as­
sume that a separation between a molecular time scale 'T mol 

and a relaxation time scale 'Trxn exists. 24
,26 In such a situation 

the long time population decay can be directly associated 
with the relaxation rate for the system. The relaxation time 
scale corresponds to the asymptotic decay of the population 
as it approaches equilibrium. 76 Note that the precise nature 
of the population decay is dependent upon the initial ensem­
ble, however the asymptotic rate at which it decays is not. 
The RI theoretic prediction for 'Trxn can be extracted: Ac­
cording to the model, the long time relaxation of A (p) will be 
exponential and be governed by the maximal eigenvalue 
whose norm is less than one77 and whose expansion coeffi­
cient aj is not equal to zero, Amax, cf. Eq. (35). The exponen­
tial n-map relaxation "rate" will be given by 

k rxn = -InC IAmax I). (39) 

Given krxn' the microcanonical relaxation rate 'T ;;nl (in-

verse time units) is approximated by assuming that one can 
bridge it to the n-map rate k rxn with the average time it takes 
a trajectory to undergo an n-map mapping, 

(40) 

Trxn is the average n-mapping time which we will call the 
"characteristic reaction time" (see appendices B and C). 

For two state isomerization it is given by (see Appendix 
B) 

T (E) = p(E) (41) 
rxn Area(LA+ (E» + Area(Ls (E» , 

where p(E) is the classical density of states Tr(8(H - E» 
Note that Eq. (40) is independent ofinitial population condi­
tions and constitutes the RI theory prediction for the relaxa­
tion rate. It should be emphasized that relating a dimension­
less map "rate" to a temporal rate, as seen in Eq. (40), is a 
simplification. More generally, one can expect that the map 
and temporal dynamics are related by more than a simple 
scaling factor (see Appendix C). Nevertheless, approxima­
tions such as Eq. (40) have their precedent in the literature 
and have been demonstrated to be accurate.45-48.51 In Paper 
II, where temporal and map population decay rates are con­
sidered, Eq. (40) will be used to obtain the decay rate. It is 
easy to show that Eq. (40) is equivalent to the transition state 
theory prediction for the decay rate between two symmetric 
conformational states (Appendix C). The decay and decay 
rate of any initial conformer popUlation (or combination of 
initial conformer populations) can be obtained using the 
equations above, which constitute the solution ofthe RI kinet­
ic equations. 

VI. DISCUSSION 

In this paper we presented a formal development of the 
RI microcanonical kinetic theory of chemical reactions. We 
specifically focused on unimolecular isomerization. How­
ever, the basic ideas are applicable to unimolecular decom­
position as well as bimolecular reactions. The development 
here differs significantly from earlier work53,54 in two impor­
tant ways: ( 1 ) we focus attention on cylindrical manifolds in 
phase space as a global dynamical concept (i.e., not limited 
to unimolecular isomerization) and (2) the RI kinetic theo­
ry is developed with the concept of the n-map-on which the 
map dynamics between one conformer and another is not 
complicated by motion asymptotic to the transition state. 

The formal development of the theory is based upon the 
existence of invariant manifolds with the geometry of simple 
cylinders embedded in phase space. The cylindrical manifolds 
rigorously mediate both pre- and post-reactive classical mo­
tion. Paper II ofthis series will present both numerical consid­
erations and explicit calculations on a variety of model molec­
ular systems representing conformational isomerization with 
two degrees of freedom. In Paper III we extend the concepts 
and applications to multidimensional molecular systems. 
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It is important to note that similar lines of thought have 
been addressed previously. In particular, Wigner, Hirsh­
felder, J. P. Davis, W. H. Miller, Pollak, Child, and Pechu­
kas have considered the "recrossing" problem for bimolecu­
lar processes (see Sec. I). Somewhat more recently, Dumont 
and Brumer have used an ergodic theoretic approach to for­
malize the statistical assumptions in classical rate theories. 67 
Their approach is based upon a decomposition of phase 
space into specific subsets. These subsets are defined in terms 
of the amount of time a trajectory will take to go from one 
point in configuration space to another. The isomerization 
rate theory presented in this paper considers subsets which 
are defined in terms of the number of oscillations in q 1 neces­
sary to pass from one conformer to another. Another possi­
ble connection is with the recent work of Berne et al.23 and 
Dumont27.67 who have dealt with the recrossing problem via 
the absorbing boundary method. In this method the fast "di­
rect" component of the reaction dynamics is approximately 
separated form the "strong collision" component of the dy­
namics. These methods clearly have some ideas in common 
with RI theory and the possibility of a detailed connection 
between is intriguing and could form the basis of future 
work. 

To generate explicit conformer population decays as 
well as extract rate constants for a specific molecular model, 
it is necessary to determine quantities such as J7' (E) as well 
as the various overlap areas. One would like to calculate 
these quantities within a formal theoretical framework. In­
deed recent developments suggest that this may be the case. 
For example the areas of so-called "turnstiles" may be ob­
tained from the action differences of homo clinic orbits. 78

-
8o 

Unfortunately the location of the homoclinic orbits is a nu­
merically sensitive task and for this reason these formulas 
are not currently as practical as one would like. Further­
more, the extension of these equations to multidimensional 
systems is, at this time, numerically intractable since it is 
apparent that such formulas would require knowledge of a 
dense set of homoclinic orbits. On the other hand we have 
found that it is possible to obtain these areas using direct 
numerical procedures. 56 

Aside from the extension to multidimensional systems, 
we see further development ofRI theory along three princi­
pal fronts: (1) quantum mechanics,81 (2) theoretical modi­
fications or extensions of the statistical assumption, and (3) 
application to realistic molecular systems. We have already 
conducted quantum mechanical numerical calculations on 
model two degree of freedom systems and have found that 
the quantum reaction dynamics is strongly influenced by the 
cylindrical manifolds. 82 These preliminary results suggest 
that a quantum mechanical theory of cylindrical manifolds 
and reactive islands may be possible-perhaps along similar 
lines of thought as those of Miller. 16 Another goal is to theo­
retically examine the statistical assumption and understand 
when it can be expected to succeed and fail, and if it fails to 
make the appropriate corrections. A final goal is to extend 
the calculations to consider canonical averages as well realis­
tic molecular models in such a way that the calculations are 
more readily accessible. We believe that such a goal is possi­
ble since the evaluation of the overlaps required for the nu-

merical application of the theory may be computationally 
achieved in a straightforward way.56 
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APPENDIX A 

In the presentation of the RI kinetic theory we have 
assumed that the dynamics at energy E is chaotic over the 
entire energy surface. However, one generally expects chao­
tic and regular motion to coexist in dynamical systems. Two 
distinct types of regular motion are possible for systems ca­
pable of reaction over a potential barrier: ( 1 ) trapped regular 
and (2) reactive regular motion. Trapped regular motion 
evolves on an invariant torus which resides within a single 
conformational state, cf. 0.1, (E) of Fig. 3. Motion on such 
invariant tori will never react. On the other hand reactive 
regular motion evolves on a torus which spans more than 
one conformational state. Consequently reactive regular 
motion reacts periodically, cf. 0.1:(E) of Fig. 3. The phase 
space measure of both types of invariant surfaces is finite and 
will thus give a finite contribution to the overall reaction 
dynamics. An accurate kinetic model must include the effect 
of both of these types of motion. We illustrate how regular 
motion may be included in the RI kinetic model by consider­
ing two state conformational isomerization. 

First, since trapped regular motion cannot react then 
the overlap between the cylindrical manifolds and the region 
of phase space associated with trapped regular motion must 
be zero. On the other hand, the region of phase space asso­
ciated with reactive regular motion must be contained com­
pletely within the cylindrical manifolds. 

Let TA be the region in ~A+ (E) which contains trapped 
regular motion, 

TA = {Z:ZE~A+ (E),U ±nZE~A+ (E),n = 1,2,3, ... ,oo}. 
(Al) 

Now, let RA be the region in ~A+ (E) which contains reactive 
regular motion and furthermore let this motion react on ev­
ery mapping U, 

RA = {Z:ZE~I (E),U ± nZE~i (E),n = 1,3,5, ... , 

U ± nZE~A+ (E),n = 2,4,6, ... }. (A2) 

It follows that RA ellA' cf. Fig. 6(b). Inclusion of both 
types of regular motion in the RI kinetic model is simply 
accomplished: The region IIA is decomposed into RA and 
(IIA - R A ) and I A- is decomposed into TA and (Ii - TA), 
i.e., 

IIi ->lIA- - R A , 

I A- ->lA- - TA • (A3) 

The simplest RI kinetic mechanism involving direct back­
reaction is then written as 
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P/Rj p{'~,pf' 1 P#R 

18 +- IrA' 
Q{1 

RB;;:=.RA 

The probabilities P1 and P"iR are now given by 

A Area(IIA - R A ) 
P 1 = , 

J r (E) - Area(RA ) 

A Jr (E) - Area(IIA ) P TR = ~-----....:.:...-
Area(l; ) 

(A4) 

(A5) 

where Area(lA- ) = Area(~A+ (E» - Jr(E) - Area( TA ). 
The resulting RI kinetic equations are 

lIA- (p) = P"iR I A- (p - 1) + P1IIs (p - 1), 

I A- (p) = Q "iR IA- (p - 1) + Q1IIs (p - 1), 

RA (p) = RB(p - 1), 

lIs (p) = P~RIs (p - 1) + PfII; (p - 1), 

Is (p) = Q~RIs (p - 1) + QflIA- (p - 1), 

RB(p) = RA (p - 1). (A6) 

The method of solution and calculation of the decay rate from 
these set of coupled linear equations is the same as that given 
in Sec. V. Similar considerations allow the inclusion of regular 
motion for any RI kinetic model. 

APPENDIXB 

In this appendix we derive Eq. (41) for Trxn (E), which is 
the average n-map mapping time for two state conformational 
isomerization. Throughout the derivation Fig. 18 should be 
carefully referenced. Consider the total density of states at 
energy E, which we denote asp(E). We decomposep(E) into 
the sum of the density of states of each conformer 
PA (E) +PB(E). Now, consider the density of states encom­
passed by the cylinders W J (E) as they emerge from r(E) 

and intersect the Poincare surface ~A+ (E) for thefirst time. 
Let the density of states so generated be designated P w ± (E). 

A 

Similarly, let p w ± (E) be the classical density of states encom-
8 

passed by the cylinders W if (E). With these definitions we 
can make the following decompositions: 

PA(E) =Pw+(E) +Pw-(E) +p~(E), 
A A 

wherep~ (E) andp~ (E) are the complement densities. The 
total density of states is written as 

peE) =Pw+(E) +Pw-(E) +Pw.(E) 
A A 8 

Given these definitions, it is possible to derive the average n­
map mapping time. First, let (T) A _B be the average time for 
points within lIA- to map ~A+ (E) --+~i (E) in one 2-map 
mapping U. Binney et al.83 have shown that this average time 
is related to the classical densities by 

FIG. 18. A schematic diagram of the cylinders as they emerge from the 
T(E) and intersect the Poincare mapping planes !. for the first time. The 
interior of the box represents the full volume of the system at an energy E, 
i.e., the total density of states at E, p( E). The dividing plane represents the 
dividing surface between conformers A and B. All density of state labels p 
have an implicit dependence on E. The arrows within the cylinders repre­
sent the direction of the flow in phase space (see also Figs. 2, 5, 7, and 8). 

(T)A_B =J;(i) i dP2 dq2 T(P2,q2), a=lIA-, 

(Pw;;(E) +Pw:(E» 
(B3) 

JT(E) 

where the integral is taken over only those points 
(pz ,qz )ElIA- and T(pz ,qz) is the time it takes for a trajec­
tory on some point (pz ,qz )E~A+ (E) to undergo a 2-map 
mapping U. Similarly, (T) B-A is given by 

(T) B_A = J ;(L i dpz dq2 T(P2,q2), a = IIi 

(Pw-(E) +pw+(E» 
8 B 

(B4) 
Jr(E) 

Next, consider those points (pz,qz )E(~A+ (E) - II;). 
Since none of these points are in the reactive island IIA- , they 
must all map back onto ~A+ (E) for at least one 2-map map­
ping U. The average mapping time for these points will be 
given by 

(T)A_A = fadpz dqz T(P2,q2) , a=~A+(E) -lIA­
Area(~} (E) - lIA- ) 

p'! (E) 
(BS) 

Area(~A+ (E) - lIA-) , 

where p'! (E) is the density of states associated with the 
points (P2,q2 )E(~A+ (E) - IIA-). Similarly, for conformer 
B we have 

(T) 
= S adP2 dq2 T(P2,q2) 

B-B , 
Area(~i (E) - lIs ) 

a= ~s (E) - lIs 

p~(E) 
(B6) 

Area(~s (E) - lIs) , 

If either ( I) ~ A+ (E) is an attractive manifold,84 or (2) the 
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dynamics over the entire energy surface is ergodic (i.e., dy­
namically indecomposable), then we can associate p~ (E) 

withp~ (E) [cf. Eq. (Bl)]. Similar conditions apply to asso­
ciate p~ (E) with p~ (E). Herein, let us assume either (1) or 
(2) or both of the above conditions are met by the Poincare 
surfaces and/or the dynamics. Substitution of Eqs. (B3)­
(B6) into Eq. (B2) yields 

peE) = Jr(E) (T) A_B + Jr(E) (T) B-A 

+ Area(~A+ (E) - IIA- )(T)A_A 

+ Area(l:i (E) - IIi) (T) B-B' (B7) 

Thus, the density of states is a weighted sum of the individual 
average n-map mapping times. Note that, 

Area(~A+ + ~i ) = 2Jr (E) + Area(~A+ (E) - IIA- ) 

+ Area(~i (E) - IIi). (B8) 

Therefore, if we divide Eq. (B7) by the total n-map area, 
Area( l: A+ (E) + l: i (E) ), then the right-hand-side of the re­
sulting equation is just the average n-map mapping time 
Tr.n (E) and we have 

T (E) = peE) 
rxn Area(l:A+ (E) + l:i (E» 

(B9) 

The derivation above can be extended to any n-map. 

APPENDIXC 

In this appendix we make use of the results in Appendix 
B to relate the microcanonical transition state theory value 
for the decay rate (1'rxn (E) ):i:5~ to the characteristic reac­
tion time Trxn • We will focus on two state conformational 
isomerization, but the ideas can be extended in a straightfor-

I 

The average times (T) A-A and (T) B_B can be physically 
interpreted as the average period of oscillation of the reaction 
coordinate ql in conformers A and E, respectively. There­
fore, if the average period of oscillation of conformer A is 
about the same as the average period of oscillation of con­
former E, then one can write 

Area(l:A+ (E» Area(l:i (E» 

XAXB'Z Area2 (l:A+ (E) + l:i (E» 
(C5) 

Equation (C5) allows us to relate the decay rate to the char­
acteristic reaction time, 

( (E» - 1 PA - B + PB - A (C6) 
1'rxn TST - T ' 

rxn 

where PA - B and PB - A are given by Eq. (30). 
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