A Methodology for Reducing Eric Leong, Gregori Tayco ADVISED BY Professor M. Baglione **Building Energy Usage**

This research outlines a methodology for reducing building energy usage and improving operational efficiency. A study of Cooper Union's engineering building, 41 Cooper Sq, shows significant laboratory ventilation and a high base load during unoccupied hours. A comparison of academic facilities and analysis of energy profiles reveals significant potential savings if HVAC usage is aligned with thermal load and occupancy.

Motivation

41 Cooper Square

Constructed in 2009, 41 Cooper Square is a 175,000 square feet academic and laboratory building on Cooper Union's campus. Certified LEED Platinum, a state of the art building management system (BMS) operates the various subsystems. The building is cooled electrically and heated using natural gas, supplemented with a cogeneration plant producing 250 kW of electricity and 450 kW in thermal energy.

Energy Flow

LEED certification, a rating system for green construction, does not account for actual performance after completion.

Energy Star, a benchmark to assess energy efficiency, does not address differences between buildings within a single property type.

Methodology /

Summarize Energy Consumption

Capture utilization of the entire building and compare to similar properties.

A large portion of energy usage goes to the air handlers located in the subcellar and on the roof.

Additional energy is spent on conditioning outside air.

Source Energy Use Intensity (EUI)

Annual energy usage per square foot, adjusted for raw fuel type.

Inspect Energy Profiles

Normalize energy consumption for occupancy and temperature.

Electricity usage only weakly correlates with occupancy. Weekend usage is high, but occupancy is low.

Investigate Individual Subsystems

Correlate energy consumption from ventilation with building hours.

Laboratories have higher ventilation requirements independent of occupancy.

Heating Degree Days

for each degree difference between the setpoint and outside in one day.

Measures thermal load due to temperature variation over a given period of time.

Degree Occupant Days

higher occupancy and Degree 🗙 temperature increases load. Occupant Dav

Simultaneously account for both thermal and occupant loads.

constant energy usage even when building is closed.

per occupant on weekends than weekdays. A few occupants are distributed throughout the building.

Building energy usage can be reduced by at least 25%.

Recommendations /

Reclassify spaces that are not utilized as laboratories. Adjust setpoints during nights and weekends.

Recommission building to meet design intent.