A Methodology for Reducing Building Energy Usage

Introduction
This research outlines a methodology for reducing building energy usage and improving operational efficiency. A study of Cooper Union’s engineering building, 41 Cooper Sq, shows significant laboratory ventilation and a high base load during unoccupied hours. A comparison of academic facilities and analysis of energy profiles reveals significant potential savings if HVAC usage is aligned with thermal load and occupancy.

Motivation
- Building sector is 32% of global energy consumption.
- LEED certification, a rating system for green construction, does not account for actual performance after completion.
- Energy Star, a benchmark to assess energy efficiency, does not address differences between buildings within a single property type.

Methodology

Summarize Energy Consumption
Capture utilization of the entire building and compare to similar properties.

Inspect Energy Profiles
- A large portion of energy usage goes to the air handlers located in the subcellar and on the roof.
- Additional energy is spent on conditioning outside air.

Investigate Individual Subsystems
Correlate energy consumption from ventilation with building hours.

- Laboratories have higher ventilation requirements independent of occupancy.
- Weekend profile reveals constant energy usage even when building is closed.

41 Cooper Square
Constructed in 2009, 41 Cooper Square is a 175,000 square feet academic and laboratory building on Cooper Union’s campus. Certified LEED Platinum, a state of the art building management system (BMS) operates the various subsystems. The building is cooled electrically and heated using natural gas, supplemented with a cogeneration plant producing 250 kW of electricity and 450 kW in thermal energy.

Energy Flow

Efficiency Loss

Operational Waste
Energy is wasted when demand exceeds the actual load. Energy load should correlate with occupancy and weather.

Source Energy Use Intensity (EUI)
Annual energy usage per square foot, adjusted for raw fuel type.

- Academic Buildings 262 kBTU/ft²
- Laboratories 382 kBTU/ft²

Heating Degree Days
Measures thermal load due to temperature variation over a given period of time.

Degree Occupant Days
Simultaneously account for both thermal and occupant loads.

Better daily electricity usage correlation than degree-days.

Building energy usage can be reduced by at least 25%.

Recommendations
- Reclassify spaces that are not utilized as laboratories.
- Adjust setpoints during nights and weekends.
- Recommission building to meet design intent.