The Cooper Union Department of Electrical Engineering ECE114 Digital Signal Processing Lecture Notes: Sinc Functions and Sampling Theory October 7, 2011

Sinc Functions

A rectangular pulse in time/frequency corresponds to a sinc function in frequency/time. Two sinc functions arise: the "ordinary" sinc, essentially $\sin \theta / \theta$, which extends from $-\infty$ to ∞ and has equally spaced zero crossings, and the *Dirichlet sinc*, which is periodic and also has equally spaced zero crossings.

Here, we take:

$$
\operatorname{sinc} \theta = \frac{\sin \theta}{\theta}
$$

Note that sometimes the sinc function is defined as $\text{sinc}(x) = \frac{\sin \pi x}{\pi x}$, as in MATLAB. The Dirichlet sinc of order N is defined as:

$$
D_N(\omega) = \frac{\sin(N\omega/2)}{N\sin(\omega/2)}
$$

Continuous-Time Rectangular Pulse

Let $x(t) = 1, 0 \le t \le T$, and 0 otherwise. Then:

$$
X\left(f\right) = e^{-j\pi fT} T \frac{\sin \pi fT}{\pi fT}
$$

Notice the linear-phase factor arises because $x(t)$ is symmetric about time $T/2$. That is, $x(t) = x_0 (t - T/2)$ where $X_0 (f)$ is zero-phase. Also observe that:

$$
X\left(mf_0\right)=T\delta\left(m\right)
$$

where here $\delta(\cdot)$ is the discrete-time impulse.

$$
f_0 = 1/T
$$

We verify the result:

$$
X(f) = \int_0^T e^{-j2\pi ft} dt
$$

=
$$
\frac{1}{-j2\pi f} e^{-j2\pi ft} \Big|_0^T
$$

=
$$
\frac{1 - e^{-j2\pi fT}}{j2\pi f}
$$

=
$$
e^{-j\pi fT} T \frac{e^{j\pi fT} - e^{-j\pi fT}}{2j(\pi fT)}
$$

=
$$
e^{-j\pi fT} T \frac{\sin \pi fT}{\pi fT}
$$

Ideal Analog Lowpass Filter

Let $H(f) = 1, |f| \le f_c$, $H(f) = 0$ otherwise. Then:

$$
h\left(t\right) = 2f_c \frac{\sin \pi t/T}{\pi t/T}
$$

where $T = 1/(2f_c)$. Observe that:

$$
h\left(nT\right) = \delta\left(n\right)
$$

where $\delta(\cdot)$ is the discrete-time impulse.

We verify the result:

$$
h(t) = \int_{-f_c}^{f_c} e^{j2\pi ft} df
$$

=
$$
\frac{1}{j2\pi t} \left[e^{j2\pi f_c t} - e^{-j2\pi f_c t} \right]
$$

=
$$
2f_c \frac{\sin(2\pi f_c t)}{2\pi f_c t}
$$

Ideal Digital Lowpass Filter

Let $H(\omega) = 1, |\omega| \leq \omega_c$, $H(\omega) = 0$ otherwise. Then:

$$
h(n) = \frac{\omega_c \sin(n\omega_c)}{\pi} \frac{sin(n\omega_c)}{n\omega_c}
$$

Observe that $h(n)$ is a sampled sinc function, but does not necessarily have exact zerocrossings (if those zero-crossings would not occur at integer time points).

We verify the result:

$$
h(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega
$$

=
$$
\frac{1}{2\pi j n} \left[e^{j\omega_c n} - e^{-j\omega_c n} \right]
$$

=
$$
\frac{\omega_c}{\pi} \frac{\sin (n\omega_c)}{n\omega_c}
$$

Discrete-Time Rectangular Pulse

Let $h(n) = 1, 0 \le n \le N - 1$, and $h(n) = 0$ otherwise. This is a discrete-time rectangular pulse. We would expect its DTFT $H(\omega)$ to be a sinc function. However, $H(\omega)$ must be periodic. Therefore, it is a Dirichlet sinc. Specifically:

$$
H(\omega) = e^{-j\left(\frac{N-1}{2}\right)\omega} N \frac{\sin (N\omega/2)}{N \sin (\omega/2)} = e^{-j\left(\frac{N-1}{2}\right)\omega} N D_N(\omega)
$$

Observe that:

$$
H(k\omega_0) = N\delta(k \mod N) = \begin{cases} N & k = 0, \pm N, \pm 2N, \cdots \\ 0 & \text{otherwise} \end{cases}
$$

where $\delta(\cdot)$ is the discrete impulse and $\omega_0 = 2\pi/N$. In other words, H (ω) is zero at all the DFT bin frequencies, other than DC.

To see this:

$$
H(\omega) = \sum_{0}^{N-1} e^{-j\omega n}
$$

=
$$
\frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}}
$$

=
$$
\frac{e^{-j\omega N/2} e^{j\omega N/2} - e^{-j\omega N/2}}{e^{j\omega/2} - e^{-j\omega/2}}
$$

=
$$
e^{-j(\frac{N-1}{2})\omega} \frac{\sin (N\omega/2)}{\sin (\omega/2)}
$$

=
$$
e^{-j(\frac{N-1}{2})\omega} N D_N(\omega)
$$

Other cases

Suppose we have a *periodic continuous-time* pulse train with period T, with $x(t) = 1$, $0 \le t \le \tau_0$, 0 for $\tau_0 < t \le T$. Then the line spectrum are samples of a sinc. Which sinc?

Suppose we have a set of DFT coefficients given by $X(k) = 1, 0 \le k \le M$, and $X(k) = 0$, $M + 1 \le k \le N - 1$. Then $x(n)$ are samples of a sinc. Which sinc?

Impulse Train

Consider a continuous-time periodic impulse train:

$$
\sum_{n=-\infty}^{\infty} \delta(t - nT)
$$

Theorem 1 The Fourier transform of a periodic impulse train is a periodic impulse train. Specifically:

$$
\sum_{n=-\infty}^{\infty} \delta(t - nT) \longleftrightarrow f_s \sum_{m=-\infty}^{\infty} \delta(f - m f_s)
$$

where $f_s = 1/T$.

Proof. The Fourier transform of the impulse train is:

$$
\mathcal{F}\sum_{n=-\infty}^{\infty}\delta\left(t-nT\right)=\sum_{n=-\infty}^{\infty}e^{-j2\pi fnT}
$$

Now, consider a discrete-time signal $x(n) = 1$ for all n. Then its DTFT is $X(\omega) =$ $\sum_{n=-\infty}^{\infty} e^{-j\omega n}$. We know this to be $2\pi\delta(\omega)$ via the IDTFT formula:

$$
1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[2\pi\delta\left(\omega\right)\right] e^{j\omega n} d\omega
$$

However, let us be more precise about this. On the one hand:

$$
\sum_{-\infty}^{\infty} e^{-j\omega n} = 2\pi \delta(\omega), -\pi \le \omega \le \pi
$$

On the other hand, we know this function is periodic with period 2π . Thus, the more precise result is:

$$
\sum_{-\infty}^{\infty} e^{-j\omega n} = 2\pi \sum_{m=-\infty}^{\infty} \delta(\omega - 2\pi m), -\infty \le \omega \le \infty
$$

Now, let us consider $\delta(a\xi)$ in terms of $\delta(\xi)$, for $a \neq 0$. Observe:

$$
\int_{\xi=-\infty}^{\infty} \delta(a\xi) f(\xi) d\xi = \frac{1}{|a|} \int_{\zeta=-\infty}^{\infty} \delta(\zeta) f(\zeta/a) d\zeta = \frac{1}{|a|} f(0)
$$

where we make the substitution $\zeta = a \xi$. Thus:

$$
\delta\left(a\xi\right) = \frac{1}{|a|}\delta\left(\xi\right)
$$

Therefore:

$$
\sum_{m=-\infty}^{\infty} e^{-j2\pi f nT} = 2\pi \sum_{m=-\infty}^{\infty} \delta (2\pi f T - 2\pi m)
$$

$$
= 2\pi \frac{1}{2\pi T} \sum_{m=-\infty}^{\infty} \delta (f - 2\pi m / 2\pi T)
$$

$$
= f_s \sum_{m=-\infty}^{\infty} \delta (f - m f_s)
$$

with $f_s = 1/T$.

Sinc Interpolation Formula

The basic sampling theorem is that if:

$$
x_a(t) \longleftrightarrow X_a(f)
$$

and $x(n) = x_a(nT)$, and:

$$
x(n) \longleftrightarrow X(\omega)
$$

then:

$$
X(\omega) = f_s \sum_{m=-\infty}^{\infty} X_a (f - m f_s)|_{\omega = 2\pi f/f_s}
$$

where $f_s = 1/T$. In terms of analog radian frequency $\Omega = 2\pi f$, with $\Omega_s = 2\pi f_s = 2\pi/T$:

$$
X(\omega) = f_s \sum_{m=-\infty}^{\infty} X_a (\Omega - m\Omega_s)|_{\omega = \Omega T}
$$

One question we may have is what is the analog signal whose spectrum is periodic. The answer is an impulse train, scaled by the samples of $x_a(t)$. That is:

Theorem 2 The inverse CTFT of $f_s \sum_{-\infty}^{\infty} X_a (f - mf_s)$, i.e., the analog signal whose spectrum is the periodized version of $X(f)$, is:

$$
\sum_{n=-\infty}^{\infty} x(n) \,\delta\left(t - nT\right)
$$

Proof. Consider $f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s)$. Its ICTFT is $\sum_{n=-\infty}^{\infty} \delta(t - nT)$. Multiplying the impulse train in the time domain by $x_a(t)$ yields:

$$
x_a(t) \sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} x_a(nT) \delta(t - nT) = \sum_{n=-\infty}^{\infty} x(n) \delta(t - nT)
$$

But this corresponds to convolution in the frequency domain:

$$
X_a(f) * f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s) = f_s \sum_{m=-\infty}^{\infty} X(f - mf_s)
$$

Assuming $X_a(f)$ is bandlimited to the range $|f| \leq f_s/2$, we have:

$$
X_a(f) = \sum_{-\infty}^{\infty} X_a(f - mf_s), -f_s/2 \le f \le f_s/2
$$

Now suppose we apply the ideal brickwall filter $H(f)$:

$$
H\left(f\right) = \begin{cases} 1 & |f| \le f_s/2 \\ 0 & \text{otherwise} \end{cases}
$$

Then:

$$
X_a(f) = H(f) \cdot \sum_{-\infty}^{\infty} X_a(f - mf_s), \ -\infty < f < \infty
$$

Taking the inverse Fourier transform yields:

Theorem 3 (Sinc Interpolation Formula) If $x_a(t)$ is bandlimited to $|f| \leq f_s/2$, then it can be perfectly reconstructed from its samples $x(n) = x_a(nT)$ via:

$$
x_a(t) = \sum_{n = -\infty}^{\infty} x(n) \phi(t - nT)
$$

where:

$$
\phi(t) = \frac{\sin(\pi t/T)}{\pi t/T}
$$