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Sinc Functions

A rectangular pulse in time/frequency corresponds to a sinc function in frequency/time.
Two sinc functions arise: the “ordinary” sinc, essentially sin §/6, which extends from —oo to
oo and has equally spaced zero crossings, and the Dirichlet sinc, which is periodic and also
has equally spaced zero crossings.

Here, we take:

>

Note that sometimes the sinc function is defined as sinc (z) = 222 as in MATLAB. The
Dirichlet sinc of order N is defined as:

_ sin(Nw/2)
N Nt/

Continuous-Time Rectangular Pulse

Let z(t) =1,0 <t < T, and 0 otherwise. Then:

sinm fT
wfT

Notice the linear-phase factor arises because z (t) is symmetric about time 7'/2. That is,
x (t) =z (t — T/2) where Xy (f) is zero-phase. Also observe that:

X (mfo) =T6 (m)

X (f) = e 0T

where here 0 (-) is the discrete-time impulse.
f() = 1/T

We verify the result:
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Ideal Analog Lowpass Filter
Let H(f) =1, |f| < f., H(f) = 0 otherwise. Then:

QURTECAE
where T'= 1/ (2f.). Observe that:
h(nT) =0 (n)

where 0 (-) is the discrete-time impulse.
We verify the result:
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Ideal Digital Lowpass Filter
Let H (w) =1, |w| < we, H (w) = 0 otherwise. Then:

h(n) = we sin (nwe)

T NWe

Observe that h(n) is a sampled sinc function, but does not necessarily have exact zero-
crossings (if those zero-crossings would not occur at integer time points).

We verify the result:
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Discrete-Time Rectangular Pulse

Let h(n) =1,0 <n < N —1, and h(n) = 0 otherwise. This is a discrete-time rectangular
pulse. We would expect its DTFT H (w) to be a sinc function. However, H (w) must be
periodic. Therefore, it is a Dirichlet sinc. Specifically:

(N1 n (Nw/2) (N1

H () = i (25 o8I (Nw/2) iy
(W) =eh Nsin (w/2) ¢« w (@)
Observe that:

N k=0,+N, 42N,

H (kwo) = N6 (kmod N) = { 0 otherwise
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where ¢ (+) is the discrete impulse and wg = 27/N. In other words, H (w) is zero at all the
DFT bin frequencies, other than DC.
To see this:
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Other cases

Suppose we have a periodic continuous-time pulse train with period T, with = (t) = 1,
0<t<rTg 0for 7g <t <T. Then the line spectrum are samples of a sinc. Which sinc?

Suppose we have a set of DFT coefficients given by X (k) = 1,0 < k < M, and X (k) = 0,
M +1<k<N —1. Then z (n) are samples of a sinc. Which sinc?

Impulse Train

Consider a continuous-time periodic impulse train:

i d(t —nT)

n=—0oo

Theorem 1 The Fourier transform of a periodic impulse train is a periodic impulse train.
Specifically:

Z §(t—nT) « fs Z o (f —mfs)

n—=——oo m=—0oQ

where fs =1/T.

Proof. The Fourier transform of the impulse train is:

[e.9]

F f: d(t—nT)= Z g J2minT

n=—o0o n=-—o00

Now, consider a discrete-time signal x(n) = 1 for all n. Then its DTFT is X (w) =
S e 7" We know this to be 276 (w) via the IDTFT formula:

n=—0oo
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However, let us be more precise about this. On the one hand:

Ze‘j“m:%ré(w), —m<w<T
On the other hand, we know this function is periodic with period 2. Thus, the more precise
result is:

Ze‘jw”:27r Z d(w—2mm), —oo <w < 0
Now, let us consider ¢ (a&) in terms of § (£), for a # 0. Observe:
JARICGY, d&—,a‘/ )£ (&) dC = 127 0)
where we make the substitution ¢ = a&. Thus:
1
0(al) = —0 (&
(0€) = 70709

Therefore:

i e 2T — or i § (2mfT — 2mm)

n=—oo m=—00

= ZWﬁ Z d(f —2mm/2rT)

= fs Z 5(f_mfs>

m=—00

with f, =1/T. m

Sinc Interpolation Formula

The basic sampling theorem is that if:

o (t) — Xao (f)
and z (n) = z, (nT), and:

z(n) — X (w)
then:

Ld) = fs Z Xa (f_mf8)|w:27rf/fs

where f; = 1/T. In terms of analog radian frequency 2 = 27 f, with Q, = 27 f, = 2 /T

o

X (w) = fs Z Xo (2 —mQ)|—ar

m=—00

One question we may have is what is the analog signal whose spectrum is periodic. The
answer is an impulse train, scaled by the samples of x, (t). That is:
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Theorem 2 The inverse CTFT of fs> .~ X, (f —mfs), i.e., the analog signal whose spec-
trum is the periodized version of X (f), is:

o0

> x(n)s(t—nT)

n=—oo

Proof. Consider f,> > 6(f—mfs). ts ICTFT is > o2 0 (t —nT'). Multiplying the

m=—00

impulse train in the time domain by z, (¢) yields:

o0 o0

za(t) Y 6(t=nT)= > aa(nT)d(t—nT)= > x(n)é(t—nT)

n=—oo n=—oo n=—oo

But this corresponds to convolution in the frequency domain:

o0

Xa(f)*fs Z 5(f_mfs):fs Z X(f_mfs)

m=—00 m=—00

]
Assuming X, (f) is bandlimited to the range |f| < f,/2, we have:

Xo(f) =D Xa(f=mf), = f/2< f < fo/2

Now suppose we apply the ideal brickwall filter H (f) :

H(f):{ L |fI < fs/2

0 otherwise

Then: -
Xa<f):H(f)'ZXa(f_mfs)7 —OO<f<OO

Taking the inverse Fourier transform yields:

Theorem 3 (Sinc Interpolation Formula) If x, (t) is bandlimited to |f| < fs/2, then it
can be perfectly reconstructed from its samples x (n) = z, (nT) via:

[e.9]

a(t)= 3 @ () (t—nT)

n=—oo

where:
_ sin(nt/T)

o (t) wt/T



