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Sinc Functions

A rectangular pulse in time/frequency corresponds to a sinc function in frequency/time.
Two sinc functions arise: the “ordinary”sinc, essentially sin θ/θ, which extends from −∞ to
∞ and has equally spaced zero crossings, and the Dirichlet sinc, which is periodic and also
has equally spaced zero crossings.
Here, we take:

sinc θ =
sinθ

θ

Note that sometimes the sinc function is defined as sinc (x) = sinπx
πx
, as in MATLAB. The

Dirichlet sinc of order N is defined as:

DN (ω) =
sin (Nω/2)

Nsin (ω/2)

Continuous-Time Rectangular Pulse

Let x (t) = 1, 0 ≤ t ≤ T , and 0 otherwise. Then:

X (f) = e−jπfTT
sin πfT

πfT

Notice the linear-phase factor arises because x (t) is symmetric about time T/2. That is,
x (t) = x0 (t− T/2) where X0 (f) is zero-phase. Also observe that:

X (mf0) = Tδ (m)

where here δ (·) is the discrete-time impulse.

f0 = 1/T

We verify the result:

X (f) =

∫ T

0

e−j2πftdt

=
1

−j2πf e−j2πft
∣∣T
0

=
1− e−j2πfT

j2πf

= e−jπfTT
ejπfT − e−jπfT

2j (πfT )

= e−jπfTT
sin πfT

πfT
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Ideal Analog Lowpass Filter

Let H (f) = 1, |f | ≤ fc, H (f) = 0 otherwise. Then:

h (t) = 2fc
sinπt/T

πt/T

where T = 1/ (2fc). Observe that:

h (nT ) = δ (n)

where δ (·) is the discrete-time impulse.
We verify the result:

h (t) =

∫ fc

−fc
ej2πftdf

=
1

j2πt

[
ej2πfct − e−j2πfct

]
= 2fc

sin (2πfct)

2πfct

Ideal Digital Lowpass Filter

Let H (ω) = 1, |ω| ≤ ωc, H (ω) = 0 otherwise. Then:

h (n) =
ωc
π

sin (nωc)

nωc

Observe that h (n) is a sampled sinc function, but does not necessarily have exact zero-
crossings (if those zero-crossings would not occur at integer time points).
We verify the result:

h (n) =
1

2π

∫ ωc

−ωc
ejωndω

=
1

2πjn

[
ejωcn − e−jωcn

]
=

ωc
π

sin (nωc)

nωc

Discrete-Time Rectangular Pulse

Let h (n) = 1, 0 ≤ n ≤ N − 1, and h (n) = 0 otherwise. This is a discrete-time rectangular
pulse. We would expect its DTFT H (ω) to be a sinc function. However, H (ω) must be
periodic. Therefore, it is a Dirichlet sinc. Specifically:

H (ω) = e−j(
N−1
2 )ωN

sin (Nω/2)

Nsin (ω/2)
= e−j(

N−1
2 )ωNDN (ω)

Observe that:

H (kω0) = Nδ (kmodN) =

{
N k = 0,±N,±2N, · · ·
0 otherwise
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where δ (·) is the discrete impulse and ω0 = 2π/N . In other words, H (ω) is zero at all the
DFT bin frequencies, other than DC.
To see this:

H (ω) =
N−1∑

0

e−jωn

=
1− e−jωN
1− e−jω

=
e−jωN/2

e−jω/2
ejωN/2 − e−jωN/2
ejω/2 − e−jω/2

= e−j(
N−1
2 )ω sin (Nω/2)

sin (ω/2)

= e−j(
N−1
2 )ωNDN (ω)

Other cases

Suppose we have a periodic continuous-time pulse train with period T , with x (t) = 1,
0 ≤ t ≤ τ 0, 0 for τ 0 < t ≤ T . Then the line spectrum are samples of a sinc. Which sinc?
Suppose we have a set of DFT coeffi cients given byX (k) = 1, 0 ≤ k ≤M , andX (k) = 0,

M + 1 ≤ k ≤ N − 1. Then x (n) are samples of a sinc. Which sinc?

Impulse Train

Consider a continuous-time periodic impulse train:

∞∑
n=−∞

δ (t− nT )

Theorem 1 The Fourier transform of a periodic impulse train is a periodic impulse train.
Specifically:

∞∑
n=−∞

δ (t− nT )←→ fs

∞∑
m=−∞

δ (f −mfs)

where fs = 1/T .

Proof. The Fourier transform of the impulse train is:

F
∞∑

n=−∞
δ (t− nT ) =

∞∑
n=−∞

e−j2πfnT

Now, consider a discrete-time signal x (n) = 1 for all n. Then its DTFT is X (ω) =∑∞
n=−∞ e

−jωn. We know this to be 2πδ (ω) via the IDTFT formula:

1 =
1

2π

∫ π

−π
[2πδ (ω)] ejωndω
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However, let us be more precise about this. On the one hand:
∞∑
−∞

e−jωn = 2πδ (ω) , − π ≤ ω ≤ π

On the other hand, we know this function is periodic with period 2π. Thus, the more precise
result is:

∞∑
−∞

e−jωn = 2π
∞∑

m=−∞
δ (ω − 2πm) , −∞ ≤ ω ≤ ∞

Now, let us consider δ (aξ) in terms of δ (ξ), for a 6= 0. Observe:∫ ∞
ξ=−∞

δ (aξ) f (ξ) dξ =
1

|a|

∫ ∞
ζ=−∞

δ (ζ) f (ζ/a) dζ =
1

|a|f (0)

where we make the substitution ζ = aξ. Thus:

δ (aξ) =
1

|a|δ (ξ)

Therefore:
∞∑

n=−∞
e−j2πfnT = 2π

∞∑
m=−∞

δ (2πfT − 2πm)

= 2π
1

2πT

∞∑
m=−∞

δ (f − 2πm/2πT )

= fs

∞∑
m=−∞

δ (f −mfs)

with fs = 1/T .

Sinc Interpolation Formula

The basic sampling theorem is that if:

xa (t)←→ Xa (f)

and x (n) = xa (nT ), and:
x (n)←→ X (ω)

then:

X (ω) = fs

∞∑
m=−∞

Xa (f −mfs)|ω=2πf/fs

where fs = 1/T . In terms of analog radian frequency Ω = 2πf , with Ωs = 2πfs = 2π/T :

X (ω) = fs

∞∑
m=−∞

Xa (Ω−mΩs)|ω=ΩT

One question we may have is what is the analog signal whose spectrum is periodic. The
answer is an impulse train, scaled by the samples of xa (t). That is:
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Theorem 2 The inverse CTFT of fs
∑∞
−∞Xa (f −mfs), i.e., the analog signal whose spec-

trum is the periodized version of X (f), is:

∞∑
n=−∞

x (n) δ (t− nT )

Proof. Consider fs
∑∞

m=−∞ δ (f −mfs). Its ICTFT is
∑∞

n=−∞ δ (t− nT ). Multiplying the
impulse train in the time domain by xa (t) yields:

xa (t)
∞∑

n=−∞
δ (t− nT ) =

∞∑
n=−∞

xa (nT ) δ (t− nT ) =
∞∑

n=−∞
x (n) δ (t− nT )

But this corresponds to convolution in the frequency domain:

Xa (f) ∗ fs
∞∑

m=−∞
δ (f −mfs) = fs

∞∑
m=−∞

X (f −mfs)

Assuming Xa (f) is bandlimited to the range |f | ≤ fs/2, we have:

Xa (f) =
∞∑
−∞

Xa (f −mfs) , − fs/2 ≤ f ≤ fs/2

Now suppose we apply the ideal brickwall filter H (f) :

H (f) =

{
1 |f | ≤ fs/2
0 otherwise

Then:

Xa (f) = H (f) ·
∞∑
−∞

Xa (f −mfs) , −∞ < f <∞

Taking the inverse Fourier transform yields:

Theorem 3 (Sinc Interpolation Formula) If xa (t) is bandlimited to |f | ≤ fs/2, then it
can be perfectly reconstructed from its samples x (n) = xa (nT ) via:

xa (t) =

∞∑
n=−∞

x (n)φ (t− nT )

where:

φ (t) =
sin (πt/T )

πt/T
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