The Cooper Union Department of Electrical Engineering ECE114 Digital Signal Processing Lecture Notes: Sinc Functions and Sampling Theory October 7, 2011

Sinc Functions

A rectangular pulse in time/frequency corresponds to a *sinc* function in frequency/time. Two sinc functions arise: the "ordinary" sinc, essentially $\sin \theta/\theta$, which extends from $-\infty$ to ∞ and has equally spaced zero crossings, and the *Dirichlet sinc*, which is periodic and also has equally spaced zero crossings.

Here, we take:

$$\operatorname{sinc} \theta = \frac{\sin\theta}{\theta}$$

Note that sometimes the sinc function is defined as sinc $(x) = \frac{\sin \pi x}{\pi x}$, as in MATLAB. The Dirichlet sinc of order N is defined as:

$$D_N(\omega) = \frac{\sin(N\omega/2)}{N\sin(\omega/2)}$$

Continuous-Time Rectangular Pulse

Let $x(t) = 1, 0 \le t \le T$, and 0 otherwise. Then:

$$X\left(f\right) = e^{-j\pi fT}T\frac{\sin\pi fT}{\pi fT}$$

Notice the linear-phase factor arises because x(t) is symmetric about time T/2. That is, $x(t) = x_0 (t - T/2)$ where $X_0(f)$ is zero-phase. Also observe that:

$$X\left(mf_{0}\right) = T\delta\left(m\right)$$

where here $\delta(\cdot)$ is the discrete-time impulse.

$$f_0 = 1/T$$

We verify the result:

$$X(f) = \int_0^T e^{-j2\pi ft} dt$$

= $\frac{1}{-j2\pi f} e^{-j2\pi ft} \Big|_0^T$
= $\frac{1 - e^{-j2\pi fT}}{j2\pi f}$
= $e^{-j\pi fT} T \frac{e^{j\pi fT} - e^{-j\pi fT}}{2j(\pi fT)}$
= $e^{-j\pi fT} T \frac{\sin \pi fT}{\pi fT}$

Ideal Analog Lowpass Filter

Let H(f) = 1, $|f| \leq f_c$, H(f) = 0 otherwise. Then:

$$h\left(t\right) = 2f_c \frac{\sin \pi t/T}{\pi t/T}$$

where $T = 1/(2f_c)$. Observe that:

$$h\left(nT\right) = \delta\left(n\right)$$

where $\delta(\cdot)$ is the discrete-time impulse.

We verify the result:

$$h(t) = \int_{-f_c}^{f_c} e^{j2\pi ft} df$$

$$= \frac{1}{j2\pi t} \left[e^{j2\pi f_c t} - e^{-j2\pi f_c t} \right]$$

$$= 2f_c \frac{\sin\left(2\pi f_c t\right)}{2\pi f_c t}$$

Ideal Digital Lowpass Filter

Let $H(\omega) = 1$, $|\omega| \le \omega_c$, $H(\omega) = 0$ otherwise. Then:

$$h\left(n\right) = \frac{\omega_{c}}{\pi} \frac{\sin\left(n\omega_{c}\right)}{n\omega_{c}}$$

Observe that h(n) is a sampled sinc function, but does not necessarily have exact zerocrossings (if those zero-crossings would not occur at integer time points).

We verify the result:

$$h(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi jn} \left[e^{j\omega_c n} - e^{-j\omega_c n} \right]$$
$$= \frac{\omega_c}{\pi} \frac{\sin(n\omega_c)}{n\omega_c}$$

Discrete-Time Rectangular Pulse

Let $h(n) = 1, 0 \le n \le N - 1$, and h(n) = 0 otherwise. This is a discrete-time rectangular pulse. We would expect its DTFT $H(\omega)$ to be a sinc function. However, $H(\omega)$ must be *periodic*. Therefore, it is a *Dirichlet sinc*. Specifically:

$$H(\omega) = e^{-j\left(\frac{N-1}{2}\right)\omega} N \frac{\sin\left(N\omega/2\right)}{N\sin\left(\omega/2\right)} = e^{-j\left(\frac{N-1}{2}\right)\omega} N D_N(\omega)$$

Observe that:

$$H(k\omega_0) = N\delta(k \mod N) = \begin{cases} N & k = 0, \pm N, \pm 2N, \cdots \\ 0 & \text{otherwise} \end{cases}$$

where $\delta(\cdot)$ is the discrete impulse and $\omega_0 = 2\pi/N$. In other words, $H(\omega)$ is zero at all the DFT bin frequencies, other than DC.

To see this:

$$H(\omega) = \sum_{0}^{N-1} e^{-j\omega n}$$

$$= \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}}$$

$$= \frac{e^{-j\omega N/2}}{e^{-j\omega/2}} \frac{e^{j\omega N/2} - e^{-j\omega N/2}}{e^{j\omega/2} - e^{-j\omega/2}}$$

$$= e^{-j(\frac{N-1}{2})\omega} \frac{\sin(N\omega/2)}{\sin(\omega/2)}$$

$$= e^{-j(\frac{N-1}{2})\omega} ND_N(\omega)$$

Other cases

Suppose we have a *periodic continuous-time* pulse train with period T, with x(t) = 1, $0 \le t \le \tau_0$, 0 for $\tau_0 < t \le T$. Then the line spectrum are samples of a sinc. Which sinc?

Suppose we have a set of DFT coefficients given by $X(k) = 1, 0 \le k \le M$, and X(k) = 0, $M + 1 \le k \le N - 1$. Then x(n) are samples of a sinc. Which sinc?

Impulse Train

Consider a continuous-time periodic impulse train:

$$\sum_{n=-\infty}^{\infty} \delta\left(t - nT\right)$$

Theorem 1 The Fourier transform of a periodic impulse train is a periodic impulse train. Specifically:

$$\sum_{n=-\infty}^{\infty} \delta\left(t - nT\right) \longleftrightarrow f_s \sum_{m=-\infty}^{\infty} \delta\left(f - mf_s\right)$$

where $f_s = 1/T$.

Proof. The Fourier transform of the impulse train is:

$$\mathcal{F}\sum_{n=-\infty}^{\infty}\delta\left(t-nT\right) = \sum_{n=-\infty}^{\infty}e^{-j2\pi fnT}$$

Now, consider a discrete-time signal x(n) = 1 for all n. Then its DTFT is $X(\omega) = \sum_{n=-\infty}^{\infty} e^{-j\omega n}$. We know this to be $2\pi\delta(\omega)$ via the IDTFT formula:

$$1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[2\pi \delta\left(\omega\right) \right] e^{j\omega n} d\omega$$

However, let us be more precise about this. On the one hand:

$$\sum_{-\infty}^{\infty} e^{-j\omega n} = 2\pi\delta\left(\omega\right), \ -\pi \le \omega \le \pi$$

On the other hand, we know this function is periodic with period 2π . Thus, the more precise result is:

$$\sum_{-\infty}^{\infty} e^{-j\omega n} = 2\pi \sum_{m=-\infty}^{\infty} \delta\left(\omega - 2\pi m\right), \ -\infty \le \omega \le \infty$$

Now, let us consider $\delta(a\xi)$ in terms of $\delta(\xi)$, for $a \neq 0$. Observe:

$$\int_{\xi=-\infty}^{\infty} \delta\left(a\xi\right) f\left(\xi\right) d\xi = \frac{1}{|a|} \int_{\zeta=-\infty}^{\infty} \delta\left(\zeta\right) f\left(\zeta/a\right) d\zeta = \frac{1}{|a|} f\left(0\right)$$

where we make the substitution $\zeta = a\xi$. Thus:

$$\delta\left(a\xi\right) = \frac{1}{|a|}\delta\left(\xi\right)$$

Therefore:

$$\sum_{n=-\infty}^{\infty} e^{-j2\pi f nT} = 2\pi \sum_{m=-\infty}^{\infty} \delta \left(2\pi f T - 2\pi m\right)$$
$$= 2\pi \frac{1}{2\pi T} \sum_{m=-\infty}^{\infty} \delta \left(f - 2\pi m/2\pi T\right)$$
$$= f_s \sum_{m=-\infty}^{\infty} \delta \left(f - mf_s\right)$$

with $f_s = 1/T$.

Sinc Interpolation Formula

The basic sampling theorem is that if:

$$x_a(t) \longleftrightarrow X_a(f)$$

and $x(n) = x_a(nT)$, and:

$$x(n) \longleftrightarrow X(\omega)$$

then:

$$X(\omega) = f_s \sum_{m=-\infty}^{\infty} X_a (f - mf_s)|_{\omega = 2\pi f/f_s}$$

where $f_s = 1/T$. In terms of analog radian frequency $\Omega = 2\pi f$, with $\Omega_s = 2\pi f_s = 2\pi/T$:

$$X(\omega) = f_s \sum_{m=-\infty}^{\infty} X_a \left(\Omega - m\Omega_s\right)|_{\omega = \Omega T}$$

One question we may have is what is the *analog* signal whose spectrum is periodic. The answer is an impulse train, scaled by the samples of $x_a(t)$. That is:

Theorem 2 The inverse CTFT of $f_s \sum_{-\infty}^{\infty} X_a (f - mf_s)$, i.e., the analog signal whose spectrum is the periodized version of X(f), is:

$$\sum_{n=-\infty}^{\infty} x(n) \,\delta\left(t - nT\right)$$

Proof. Consider $f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s)$. Its ICTFT is $\sum_{n=-\infty}^{\infty} \delta(t - nT)$. Multiplying the impulse train in the time domain by $x_a(t)$ yields:

$$x_a(t)\sum_{n=-\infty}^{\infty}\delta(t-nT) = \sum_{n=-\infty}^{\infty}x_a(nT)\,\delta(t-nT) = \sum_{n=-\infty}^{\infty}x(n)\,\delta(t-nT)$$

But this corresponds to convolution in the frequency domain:

$$X_a(f) * f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s) = f_s \sum_{m=-\infty}^{\infty} X(f - mf_s)$$

Assuming $X_a(f)$ is bandlimited to the range $|f| \leq f_s/2$, we have:

$$X_{a}(f) = \sum_{-\infty}^{\infty} X_{a}(f - mf_{s}), \ -f_{s}/2 \le f \le f_{s}/2$$

Now suppose we apply the ideal brickwall filter H(f):

$$H(f) = \begin{cases} 1 & |f| \le f_s/2 \\ 0 & \text{otherwise} \end{cases}$$

Then:

$$X_{a}(f) = H(f) \cdot \sum_{-\infty}^{\infty} X_{a}(f - mf_{s}), -\infty < f < \infty$$

Taking the inverse Fourier transform yields:

Theorem 3 (Sinc Interpolation Formula) If $x_a(t)$ is bandlimited to $|f| \le f_s/2$, then it can be perfectly reconstructed from its samples $x(n) = x_a(nT)$ via:

$$x_{a}(t) = \sum_{n=-\infty}^{\infty} x(n) \phi(t - nT)$$

where:

$$\phi\left(t\right) = \frac{\sin\left(\pi t/T\right)}{\pi t/T}$$