The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Vector Analysis

March 8, 2012

Vector Calculus Identities

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$$

$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} (\vec{A} \cdot \vec{C}) - \vec{C} (\vec{A} \cdot \vec{B})$$

$$\begin{array}{rcl} \nabla \left(fg \right) & = & f \nabla g + g \nabla f \\ \nabla \cdot \left(f \vec{G} \right) & = & f \nabla \cdot \vec{G} + \vec{G} \cdot \nabla f \\ \nabla \times \left(f \vec{G} \right) & = & f \nabla \times \vec{G} + \nabla f \times \vec{G} \\ \nabla \cdot \left(\vec{A} \times \vec{B} \right) & = & \vec{B} \cdot \left(\nabla \times \vec{A} \right) - \vec{A} \cdot \left(\nabla \times \vec{B} \right) \end{array}$$

$$\nabla \times \nabla f = 0$$

$$\nabla \cdot \left(\nabla \times \vec{G} \right) = 0$$

$$\nabla^2 f = \nabla \cdot \nabla f$$

$$\nabla^2 \vec{G} = \nabla \left(\nabla \cdot \vec{G} \right) - \nabla \times \left(\nabla \times \vec{G} \right)$$

$$\int_{V} \nabla \cdot \vec{G} dv = \oint_{\partial V} \vec{G} \cdot \vec{n} dS$$

$$\int_{V} \nabla \times \vec{G} dv = \oint_{\partial V} \vec{n} \times \vec{G} dS$$

$$\int_{S} \left(\nabla \times \vec{G} \right) \cdot \vec{n} dS = \oint_{\partial S} \vec{G} \cdot \vec{T} dS$$

Rectangular Coordinates: (x, y, z)

$$\vec{r} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$$

$$\hat{a}_x \times \hat{a}_y = \hat{a}_z$$

$$\hat{a}_y \times \hat{a}_z = \hat{a}_x$$

$$\hat{a}_z \times \hat{a}_x = \hat{a}_y$$

Cylindrical Coordinates: (r, ϕ, z)

$$\vec{r} = r\hat{a}_r + z\hat{a}_z$$

$$\hat{a}_r \times \hat{a}_\phi = \hat{a}_z$$

$$\hat{a}_\phi \times \hat{a}_z = \hat{a}_r$$

$$\hat{a}_z \times \hat{a}_r = \hat{a}_\phi$$

$$\hat{a}_r = \cos\phi\hat{a}_x + \sin\phi\hat{a}_y$$

$$\hat{a}_\phi = -\sin\phi\hat{a}_x + \cos\phi\hat{a}_y$$

$$\hat{a}_z = \hat{a}_z$$

$$x = r\cos\phi$$

$$y = r\sin\phi$$

$$z = z$$

Spherical Coordinates: (r, ϕ, θ)

$$\vec{r} = r\hat{a}_r$$

$$\hat{a}_r \times \hat{a}_\theta = \hat{a}_\phi$$

$$\hat{a}_\theta \times \hat{a}_\phi = \hat{a}_r$$

$$\hat{a}_\phi \times \hat{a}_r = \hat{a}_\theta$$

$$\hat{a}_r = \sin\theta \left(\cos\phi\hat{a}_x + \sin\phi\hat{a}_y\right) + \cos\theta\hat{a}_z$$

$$\hat{a}_\phi = \sin\theta \left(-\sin\phi\hat{a}_x + \cos\phi\hat{a}_y\right)$$

$$\hat{a}_\theta = \cos\theta \left(\cos\phi\hat{a}_x + \sin\phi\hat{a}_y\right) - \sin\theta\hat{a}_z$$

$$x = r\cos\phi\sin\theta$$

$$y = r\sin\phi\sin\theta$$

$$z = r\cos\theta$$

Differential Forms and Operators

Rectangular Coordinates: (x, y, z)

$$\nabla f = \hat{a}_x \frac{\partial f}{\partial x} + \hat{a}_y \frac{\partial f}{\partial y} + \hat{a}_z \frac{\partial f}{\partial z}$$

$$\nabla \cdot \vec{G} = \frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial y} + \frac{\partial G_z}{\partial z}$$

$$\nabla \times \vec{G} = \begin{vmatrix} \hat{a}_x & \hat{a}_y & \hat{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$= \begin{pmatrix} \frac{\partial G_z}{\partial y} - \frac{\partial G_y}{\partial z} \end{pmatrix} \hat{a}_x + \begin{pmatrix} \frac{\partial G_x}{\partial z} - \frac{\partial G_z}{\partial x} \end{pmatrix} \hat{a}_y + \begin{pmatrix} \frac{\partial G_y}{\partial x} - \frac{\partial G_x}{\partial y} \end{pmatrix} \hat{a}_z$$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

$$\nabla^2 \vec{G} = \nabla^2 G_x \hat{a}_x + \nabla^2 G_y \hat{a}_y + \nabla^2 G_z \hat{a}_z$$

Differential volume : dvol = dxdydz

Cylindrical Coordinates: (r, ϕ, z)

$$\nabla f = \hat{a}_r \frac{\partial f}{\partial r} + \hat{a}_\phi \frac{1}{r} \frac{\partial f}{\partial \phi} + \hat{a}_z \frac{\partial f}{\partial z}$$

$$\nabla \cdot \vec{G} = \frac{1}{r} \frac{\partial}{\partial r} (rG_r) + \frac{1}{r} \frac{\partial G_\phi}{\partial \phi} + \frac{\partial G_z}{\partial z}$$

$$\nabla \times \vec{G} = \frac{1}{r} \begin{vmatrix} \hat{a}_r & r \hat{a}_\phi & \hat{a}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$= \left(\frac{1}{r} \frac{\partial G_z}{\partial \phi} - \frac{\partial G_\phi}{\partial z} \right) \hat{a}_r + \left(\frac{\partial G_r}{\partial z} - \frac{\partial G_z}{\partial r} \right) \hat{a}_\phi + \frac{1}{r} \left(\frac{\partial}{\partial r} (rG_\phi) - \frac{\partial G_r}{\partial \phi} \right) \hat{a}_z$$

$$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

Differential volume:

$$d$$
vol = $rdrd\phi dz$

Differential surface area (constant r):

$$dS = rd\phi dz$$

Spherical Coordinates: (r, θ, ϕ)

$$\nabla f = \hat{a}_r \frac{\partial f}{\partial r} + \hat{a}_\theta \frac{1}{r} \frac{\partial f}{\partial \theta} + \hat{a}_\phi \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}$$

$$\nabla \cdot \vec{G} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 G_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(G_\theta \sin \theta \right) + \frac{1}{r \sin \theta} \frac{\partial G_\phi}{\partial \phi}$$

$$\nabla \times \vec{G} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{a}_r & r \hat{a}_{\theta} & r \sin \theta \hat{a}_{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ G_r & r G_{\theta} & r \sin \theta G_{\phi} \end{vmatrix}$$

$$= \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(G_{\phi} \sin \theta \right) - \frac{\partial G_{\theta}}{\partial \phi} \right) \hat{a}_r + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial G_r}{\partial \phi} - \frac{\partial}{\partial r} \left(r G_{\phi} \right) \right) \hat{a}_{\theta}$$

$$+ \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r G_{\theta} \right) - \frac{\partial G_r}{\partial \theta} \right) \hat{a}_{\phi}$$

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

Differential volume:

$$d\text{vol} = r^2 \sin \theta dr d\theta d\phi$$

Differential surface area (constant r):

$$dS = r^2 \sin \theta d\theta d\phi$$

Free-Space Constants

Speed of light: $c \approx 3 \times 10^8 \ m/\text{sec}$

Permittivity: $\epsilon_0 \equiv \frac{1}{\mu_0 c^2} \approx \frac{1}{36\pi} \times 10^{-9} \approx 8.854 \times 10^{-12} \ F/m$

Permeability: $\mu_0 \equiv 4\pi \times 10^{-7}~H/m$

Impedance: $\eta_0 \equiv \sqrt{\mu_0/\epsilon_0} \approx 120\pi \approx 377 \Omega$

Additional Remarks

r and \hat{a}_r for cylindrical coordinates are **not** the same as r and \hat{a}_r for spherical coordinates. Some texts use different symbols (e.g., r for cylindrical case and R for spherical case); we will just be clear to indicate the coordinate system in use.

 \hat{a}_{ϕ} does denote the same vector in either cylindrical or spherical coordinates, and the parameter ϕ is the same in both cases as well.

It is important to recognize that the vectors \hat{a}_r , \hat{a}_ϕ in cylindrical coordinates and \hat{a}_r , \hat{a}_ϕ , \hat{a}_θ in spherical coordinates are not constant, but are *spatially varying*. This causes formulas involving ∇ to become complicated. Specifically: $\hat{a}_\phi = \hat{a}_\phi(\phi)$ depends on ϕ only. In cylindrical coordinates, $\hat{a}_r = \hat{a}_r(\phi)$ depends on ϕ , not r or z. In spherical coordinates, $\hat{a}_r = \hat{a}_r(\theta, \phi)$ and $\hat{a}_\theta = \hat{a}_\theta(\theta, \phi)$ depend on both angle parameters, but not r.

For a vector field $\vec{G}(\vec{r})$, $\nabla^2 \vec{G} = (\nabla^2 G_x) \hat{a}_x + (\nabla^2 G_y) \hat{a}_y + (\nabla^2 G_z) \hat{a}_z$ in **rectangular coordinates!!** In the other coordinate systems, since the unit vectors are spatially varying, similar decompositions are not correct; for example, in spherical coordinates:

$$\nabla^2 \vec{G} \neq (\nabla^2 G_r) \, \hat{a}_r + (\nabla^2 G_\phi) \, \hat{a}_\phi + (\nabla^2 G_\theta) \, \hat{a}_\theta$$

The correct formulas are quite complicated, and are not included in these notes. The coordinate-free definition of $\nabla^2 \vec{G}$ is:

$$\nabla^2 \vec{G} = \nabla \left(\nabla \cdot \vec{G} \right) - \nabla \times \left(\nabla \times \vec{G} \right)$$

 θ is called the *polar* angle and ϕ the *azimuth*. $\theta=0$ at the "north pole" and $\theta=\pi$ at the "south pole." In some situations, it is more convenient to work with $\theta'=\pi/2-\theta$, called the *elevation* angle; $\theta'=0$ in the *xy*-plane, $\theta'>0$ in the upper hemispher, and $\theta'<0$ in the lower hemisphere.

In general, a vector field is specified uniquely up to an additive constant by its divergence $\nabla \cdot \vec{F} = g(\vec{r})$ and curl $\nabla \times \vec{F} = \vec{G}(\vec{r})$; g and \vec{G} can be specified arbitrarily (i.e., independently of each other). Similarly, a scalar field is uniquely determined, up to an additive constant, by its gradient $\nabla f = \vec{G}(\vec{r})$.