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Abstract—It is well-known that selfish routing, where indi-
vidual agents make uncoordinated greedy routing decisions,
does not produce a socially desirable outcome in transport
and communication networks. In this paper, we address this
general problem of the loss of social welfare that occurs due
to uncoordinated behavior in networks and model it as a mul-
tiagent coordination problem. Specifically we study strategies
to overcome selfish routing in traffic networks with multiple
routes where a subset of vehicles are part of a social network
that exchanges traffic related data. We investigate classic traffic
flow paradoxes that are ubiquitous in various types of networks
leading to severe congestion. We present a novel distributed
traffic coordination algorithm that alleviates congestion by har-
nessing the real-time information available through the driver’s
online social network. We also propose a utility computation
mechanism for route choice that generates near-optimal flows.
Our extensive simulation results show that social network based
multiagent traffic route coordination contributes to mitigate the
effects of these paradoxes and significantly reduces congestion.

I. INTRODUCTION

Selfish routing, where individual agents make uncoordi-
nated routing decisions only in the interest of their own
performance, is known to be inefficient. It leads to congestion
problems in networked systems [7], [13], [14].

We have several motivations for the work reported in
this paper. First, since the publication of the aforementioned
(and other) works on selfish routing, the panorama has
changed. There is an increasing prevalence in the use of
social networks where communication of information among
individuals using the network is real-time and seamless. This
trend is giving traction to mobile apps for transport networks,
such as Waze and Roadify, designed to enable commuters
to share realtime traffic information. This work is aimed at
opening a thread of inquiry to determine the underpinnings of
Waze-like algorithms, which are not accessible to the public,
with the goal of providing improvements where possible. It
has also led to recent interest [9], [10], [5] in studying
the potential benefits of the social communication aspects of
these mobile apps and how they can be effectively applied
towards minimizing traffic congestion. Our work is motivated
by such initiatives and we seek to take advantage of these
new technologies to use them to better distribute vehicles in
the network with the simulation goals of reducing congestion.

Second, the increase in average travel time due to selfish
routing has been extensively studied with respect to two
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classic traffic flow paradoxes: Pigou [11] and Braess [2].
Using a simple two route network, Pigou’s paradox demon-
strates the principle that selfish behavior need not produce
a socially optimal behavior. Braess’ paradox reinforces the
sub-optimality of selfish routing by showing that network
improvements (adding a zero or low cost route to reduce
congestion) can result in increased congestion when drivers
choose routes selfishly. In real transportation networks, it has
been observed [12] that this problem could be resolved by
restructuring the network (shutting down a road). Another
strategy is to introduce tolls on faster routes that not only
incur extra costs for drivers but also change the cost structure
of the routes. Our goal is to solve these paradoxes without
restructuring the networks or by enforcing tolls, both of
which could be very expensive. Instead we use the driver’s
social network data to facilitate coordinated routing.

Third, traffic congestion is closely related to two funda-
mental concepts in traffic assignment, namely the user equi-
librium (UE) and the system (or social) optimum (SO), for-
mulated by Wardrop [16]. The former states that “under equi-
librium conditions, traffic arranges itself in congested net-
works such that all used routes between an origin-destination
(OD) pair have equal and minimum costs, while all those
routes that were not used have greater or equal costs.” This
is Wardrop’s first principle, also known as Wardrop’s user, or
Nash equilibrium. Wardrop’s second principle corresponds to
the SO and states that under social equilibrium conditions,
traffic should be arranged in congested networks in such a
way that average (or total) travel cost is minimized. Further,
the concept of price of anarchy [7] measures the effect
of decentralized decision-making in a system in which its
components act selfishly, i.e., it is defined as the ratio between
the worst equilibrium (worst UE) and the optimal solution
(SO). Therefore, in order to achieve a socially beneficial
outcome, it is important to reduce the price of anarchy by
establishing optimal flows. In the event of congestion, all
drivers may strictly prefer a coordinated outcome to the flow
at Nash equilibrium to reduce the price of anarchy. Our
approach seeks to achieve the SO in which the Nash flow
is strictly Pareto-dominated by the optimal flow.

In order to create optimal flows in transportation networks,
we model this problem as a multiagent system (MAS)
distributed coordination problem. Drivers traveling through



the roads act as agents that make route choice decisions
in a distributed fashion. The goal is to create a mechanism
for coordinated decision making. We envision a scenario in
which a certain fraction of drivers in transportation networks
are connected via an online social network traffic app. When
a driver encounters congestion in the route she is currently
traveling or just finished traveling, she will report the level of
congestion in the form of a post in the traffic app. Creating a
post can be constrained by the GPS readings so that a driver
can only post congestion levels about a route in which she is
traveling. Based on the collection of congestion reports, the
traffic app continuously computes the utility of each route in
real-time. The utility of a route is a measure of traffic moving
smoothly on that route and is computed using the collective
reported congestion information. Unlike conventional elec-
tronic map apps, there is bi-directional information flow in
our app, i.e., drivers connected via the app have access to
the route utility values which they can choose to use to make
route choices.

We propose to augment the traffic app with a traffic route
preference function (TRPF) that computes the route utility
values. The TRPF is based on real-time congestion data
collected from the drivers. Drivers are able to choose a
moving time window to compute the route utility based on
data from the past n hours so that the app is able to improve
its prediction over the long run. Our goal is to improve
the travel time for individual drivers while also reducing
the average travel time of all the drivers. TRPF not only
allows users to share relevant information with each other to
improve their travel experience, but also offers valuable data
that could ultimately help transportation agencies upgrade
the way they structure initiatives aimed at improving and
streamlining commutes.

To gain a deeper understanding about how this traffic app
could improve the system behavior, we perform an extensive
simulation study. We choose two simple traffic networks [11],
[2] for investigation that are well studied in the literature for
resolving the congestion problem. As discussed below, one
of the challenges of providing global information about the
routes to drivers is that it might lead to oscillation. Using
simulations, we determine the optimum parameter settings
based on these two simple network scenarios that reduce
oscillation and ensure a stable traffic flow across routes. Our
primary goal for this paper is to identify the fundamental
aspects of TRPF to be able to implement it for larger
network scenarios in the future. Simulation results show
that the social network based route coordination approach
successfully resolves these paradoxes while reducing both
congestion and the average travel time.

To summarize, in this paper we emphasize the benefits
of harnessing the online social network platform to reduce
congestion using a couple of well-known networks as case
studies . The main contributions of this paper are:

o For a given number of vehicles traveling from a source
to destination, our route-preference approach achieves
the socially optimal (or near-optimal) distribution of
drivers.

(a) 2 route network

(b) 3 route network
Fig. 1. Modified Pigou’s Networks

o We present a MAS coordination model that leverages
drivers’ social network to facilitate establishing the
optimal traffic distribution.

e We show that our model is able to resolve the classic
traffic flow paradoxes such as Pigou and Braess that
result from selfish routing.

II. CLASSIC TRAFFIC SCENARIOS

We describe two networks used to illustrate our approach.
The simple network in Fig. 1(a) is a variant of Pigou’s
example [11] on the effects of selfish routing. Both SMD
and SND routes lead from a source S to a destination D.
Consider that a flow of 200 want to use the network. The
individual costs (latency/travel time) associated with each
edge are either constant (¢ = 20) or variable (a function
of the flow x using an edge). The cost of SMD and SND
are 40 and 20 + 0.1z respectively. Route SND is cheaper
from each individual driver’s perspective. Thus, under the
assumption that each driver aims to maximize her utility, we
can expect that the entire flow uses SND. Moreover, no driver
has incentive to shift to SMD since it also incurs a cost of 40
there. Hence, under UE only SND is used. This is certainly
not the best distribution from the overall point of view: if the
traffic flow could be coordinated (instead of being a product
of selfish routing), the best distribution from the social point
of view (SO), would be assigning 100 to each route. The
average cost in this case would be 35, which is smaller than
that at UE.

Similar conclusions can be reached in the case of three
routes (Fig. 1(b)): because SMPD is the cheapest route from
the individual point of view, the entire flow of 200 will
use SMPD with an average cost of 60. However, the social
optimum occurs when 75 use SMPD and 125 use SMND,
causing a reduced average cost of 44.375.

Another example vastly used in the literature on selfish
routing is due to Braess [2]. An instance of it is depicted
here in Fig. 2. Assume flow is 4000 and ¢ = 45. The
paradox occurs due to the following: Initially, there were just
two routes to go from S to D, one via v and one via w (
Fig. 2(a)). Since costs are identical, the whole flow splits
equally producing an individual cost of 20 + 45. The traffic
authority then decides to construct a high capacity link from
v to w (Fig. 2(b)). This new link has cost or latency of 0.
Obviously, now, all flow will deviate to route SvwD. This
causes high cost in both Sv and wD edges. The individual
cost is now 40 4 0 + 40, which is higher than the one
experienced prior to when the additional edge was included.



(b) extended network

(a) initial network

Fig. 2. Braess’ Paradox

Worse, if a single driver decides to take for instance SwD,
its travel time increases to 85. Thus it has no incentive to
do so. Like the previous examples, we could do better if we
could route the flow to the SO in the following way: 1745
take SvD, 1745 take SwD, and 510 take the route via vw.
The cost in the latter group is just 45, while it is 67.5 for
the others. The average cost is obviously lower than the one
obtained by selfish routing (64.68 instead of 80).

III. RELATED WORK

The problem of routing vehicles (or packages in a commu-
nication network) has received great attention in the literature.
For example, the aforementioned literature on selfish routing
and the price of anarchy [7], [13] aims at bounding the worst
possible severity of phenomena related to selfish routing.
Roughgarden [12] suggests three ways to cope with self-
ishness: increasing the capacity of the network, influencing
traffic with edge taxes (tolls), and routing a small amount
of traffic centrally. The first involves social, environmental,
and economic costs that lie in the area of political decision-
making. Regarding the second direction, Buriol et al. [3]
proposed an approach that finds a traffic flow that is both UE
and the SO. However, they solve this optimization problem
by finding a set of edges in which a number of toll booths
should be placed, i.e., they solve a different problem, namely
imposing additional costs to make the user equilibrium and
the system optimum coincide. As for the third direction, a
solution via Stackelberg routing is discussed in [12]. This
solution was formulated for communication networks; it is
unclear how a portion of the vehicular traffic can be centrally
routed. In the present paper, we argue that traffic routing
can be best implemented using route recommendation in
conjunction with collaborative congestion data collection.

In the area of guidance and recommendation, there are
classical as well as agent-based works that investigate the
effects of providing information to drivers. In the interest
of space, we just mention that oscillations are seen when
everyone receives the same information.

A simple form of social network is reported in Bazzan et
al. [1] for a commuting scenario (restricted to a simple binary
route choice) in which information can be provided by office
mates, by acquaintances, by malicious agents, or by route
guidance. It was found that information is beneficial.

Vasserman et al. [15] investigate whether Waze can, in
general, implement the socially optimal solution. It differs
from ours in the sense that it does not explicitly consider the
drivers as source of information; it assumes that all drivers
use Waze; and its focus is on incentive compatible policies

to compute a mediated equilibria. In the VANET community,
there has been some early attempts [4], [8] to consider social
relationships between vehicles or drivers. Most of them focus
on reproducing the mobility models. However these models
aim mainly at detecting communities of vehicles and they do
not map the vehicles on a real topological space.

In the same line, other works advocate for providing
knowledge to vehicles and for the use of data collected from
social networks, in order to help to improve traffic prediction,
as in [5], [10]. These however do not discuss the use of the
methods in routing scenarios.

IV. OUR APPROACH

In the New Cities Foundation (Connected Commuting)
study [9] on the urban commuting problems in San Jose, the
central question posed is whether a new level of networking
between commuters could enhance the overall commuting
experience. One of their key observations is that commuter
comments collected by smartphone applications provide valu-
able high-quality real-time data about commuter sentiment
in relation to their commutes. In our approach, users report
the congestion level of the route they traveled. Each driver
then calculates the Traffic Route Preference Function (TRPF),
which fuses the congestion reports into a representation of
the utility of each route. The driver can then choose the route
that maximizes the TRPF. The goal of this method is for each
vehicle to use the congestion reports to choose a route such
that average travel time for all vehicles is minimized.

A. Problem Model

We model a commuting scenario. Each edge has an as-
sociated cost function, which represents the travel time, or
latency, a driver would experience traveling along that edge.
In our scenarios, the cost function is linear with respect to the
number of drivers on that edge. Given N drivers and k routes
from which they can choose, we want drivers to distribute
themselves in such a way as to achieve the optimal flow. The
optimal number of drivers along a route, O; i = 1,2,....k
can be found by solving a convex optimization problem using
CPLEX (quadratic programming).

Next, we introduce the three main parameters of our
model: G, p, and T'. To model drivers’ decisions, we assume
that without any external stimulus, drivers will choose the
route that has previously given them the lowest travel time.
This causes the driver distribution to converge to the UE.
However, with probability 1 — G, a driver will stick with
the same route as last time, which is a way for us to
model a person’s desire to exploit their previously gained
experience rather than exploring new options. Parameter G
allows us to control the number of agents who change their
route each round to determine the effect of this number
on the performance of TRPF; especially how it influences
oscillation.

We assume that a fraction p of the drivers have access to a
Waze-like app creating a dynamic social network. This is the
fraction of drivers who will be using the TRPF. When drivers
run into congestion, if they are part of the social network,



they will report it using one of two possible congestion levels:
Level 1: moderate congestion (traffic moving slowly) or Level
2: heavy congestion (standstill traffic). We define a weight
metric called the congestion multiplier associated with each
congestion level. For Level 1, a congestion multiplier w = 3
is used, and for Level 2, w = 5. Each vehicle in the social
network receives reports from the other vehicles in the social
network and calculates the TRPF. Drivers may use a number
of rounds, represented by the parameter 7', to determine their
individual utility value for each route.

B. Traffic Route Preference Function (TRPF)

The TRPF is a measure of whether more drivers are on a
route than the optimal distribution of drivers would suggest. It
fuses the traffic reports from the drivers in the social network
to result in a function that achieves its maximum when fewer
drivers are on a route than should be in the SO. The TRPF
for route ¢ is a function of the traffic reports for the last
T rounds. If t is the current round, nl(.t) is the number of
drivers reporting congestion for route 7 at time ¢, and wgt) is
the congestion multiplier for route ¢ at time ¢, then the TRPF
is given by:

Sy w”
Zfr:th "z('T)

This express the total congestion report for route ¢ over the
last T' rounds, normalized by the number of drivers reporting
congestion. The purpose of the subtraction is so that the
function is maximized when fewer drivers use route <.

If fewer than O; drivers (the optimal number of drivers on
route %) choose route i, then the TRPF for route ¢ will be 1.
The TRPF will decrease as the difference between the number
of drivers on a route and the SO of that route increases.

Our approach proceeds in the following steps:

1) Initialization: Each driver will use the TRPF with
probability p.

2) Each driver chooses a new route. With probability 1 —
G, a driver will choose the same route as last time.
Of the drivers who can change their route, those who
use the TRPF will choose the route with the maximum
TRPF value and those who do not use the TRPF will
choose the route that has historically resulted in the
minimum travel time.

3) Drivers travel along the route and receive the travel
cost.

4) Drivers who use the TRPF report the congestion levels
for their routes.

5) Drivers who use the TRPF receive the reports from
other drivers and calculate the new TRPF based on the
last T' rounds.

6) Repeat, starting from Step 2.

TRPF(t) =1—

V. SIMULATION AND RESULTS ANALYSIS

We conduct simulations with the following goals: (i) inves-
tigate the performance of TRPF for reducing congestion and
average cost (travel time) (ii) determine the conditions under

which use of TRPF provides optimum performance, i.e.,
minimum-possible average cost with no/small oscillations in
the route choices. We use the previously introduced Modified
Pigou’s Network with three routes (Fig. 1(b)) and Braess’
Network (Fig. 2) with a constant flow of 200 and 4000 drivers
respectively to study the effectiveness of our approach. In our
experiments, the total number of vehicles on the combined
routes for the two networks sometimes exceed the total
number of vehicles since these are averages over a number
of rounds.

We vary the three parameters G (fraction of drivers that
change routes in each round), p (fraction of drivers that use
TRPF to choose routes), and 7' (number of previous rounds
used to calculate TRPF) to observe the effect of TRPF on
traffic distribution (average number of drivers in each route)
and average cost. Each simulation reports the results of 200
rounds. These results are generated by taking the average of
last 100 rounds once the traffic distribution becomes stable.

Table I reports the results of simulations for four scenarios
in Pigou’s and Braess’ network. Rows 1-5 of Table I represent
scenario 1, in which 20% drivers (G = 0.2) may change their
routes every journey. Also, drivers having the TRPF app use
data from the past one hour (7" = 1) to compute TRPF values.
Among the 20% drivers (who may change their routes), those
who do not have the app will choose the historical lowest-
cost (selfish) route. If they are already using the historical
lowest-cost route, then they do not change routes. However,
if some (or the majority) of these drivers have access to the
TRPF app, then they switch to the route with highest TRPF
value. Parameter p controls the fraction of drivers that use
the app to change routes. When the value of p is large, a
majority of the drivers use TRPF for choosing a new route.
With G and T set at fixed levels (second and third columns),
we vary the value of p to observe how it influences the traffic
distribution and the average cost.

When p = 0, the majority of the drivers choose the
historical lowest-cost route, i.e., SMPD in Pigou’s network
and SvwD in Braess’ network. As anticipated in Section II,
we observe that a majority of the drivers choose these routes,
creating heavy congestion with an increased average cost. As
the value of p increases, the traffic distribution in the three
routes approaches the SO with a decrease in average cost (as
described in section II, at SO the average cost for Pigou’s and
Braess’ network would be 44.38 and 64.68 respectively).

However, Fig. 3 shows that with p > 0.5 traffic oscillation
gradually starts increasing, peaking at p = 0.9. The reason is
that the majority of the drivers that change their routes use
the TRPF app as compared to small values of p (< 0.5), in
which only a small fraction changes route and the majority
stick to their lowest-cost route. That is why higher values
of p (> 0.5) lead to oscillation. We remark however that
the average cost does not decrease at higher values of p.
This indicates that oscillation, while not preferable, does not
degrade system performance (i.e., does not increase average
cost). The standard deviation of the traffic distribution in-
creases with the increase of oscillation for larger p values. We
observe a relatively stable traffic distribution for the values



TABLE I
MODIFIED PIGOU’S NETWORK WITH THREE ROUTES & BRAESS” NETWORK: EFFECT OF THE VARIATION OF G, T & P.

[ [ Modified Pigou’s Network with 3 Routes

I Braess’ Network

G | T p # SMND drivers | # SMPD drivers | # SOPD drivers Cost # SvD drivers # SwD drivers # SvwD drivers Cost
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
1 02 | 1 0 49.25 2.06 14747 | 271 3.28 1.70 49.96 | 0.32 118.02 22.79 116.99 16.51 | 376498 | 34.54 | 78.01 | 0.28
2 02 ] 1]03] 5156 3.62 137.13 | 245 11.31 2.65 49.29 | 043 627.35 2343 639.08 19.07 | 2733.57 | 2255 | 7093 | 0.13
3 02| 1] 05] 8566 4.34 101.62 | 2.54 12.71 3.64 45.83 | 0.28 || 1041.97 | 24.37 | 105590 | 24.68 | 1902.12 | 34.01 | 67.15 | 0.12
4 02 | 1] 0.7 ] 10025 6.95 85.48 5.07 | 1428 5.30 45.13 | 0.32 || 1399.68 | 31.71 1411.03 | 39.51 1189.28 | 48.87 | 65.29 | 0.09
5 02| 11]09]10786 | 7.13 78.61 6.77 13.52 4.42 4492 | 020 || 1681.57 | 139.08 | 1679.59 | 144.94 | 638.83 | 112.68 | 64.81 | 0.14
6 02 3] 0 49.95 1.77 14728 | 1.90 2.77 1.62 49.87 | 0.24 111.89 13.67 113.7 20.38 3774.4 30.57 | 78.09 | 0.25
7 02 | 3] 03] 4887 3.56 14193 | 2.64 9.19 2.82 49.75 | 0.44 648.46 16.36 649.16 21.00 | 2702.38 | 26.37 | 70.75 | 0.15
8 02 | 3] 05 ] 9451 5.43 95.72 4.37 9.76 3.82 4532 | 0.30 990.29 26.74 989.92 2532 | 2019.79 | 33.77 | 67.58 | 0.13
9 02 | 3] 07 ] 11027 8.26 78.95 741 10.72 5.34 44.82 | 0.25 1419.7 3472 | 1416.16 | 31.73 | 1164.14 | 47.76 | 65.23 | 0.09
10 ] 02 ]3] 09 | 11287 | 1454 | 7327 1279 | 13.86 8.19 4498 | 041 1642.97 | 300.3 | 1633.96 | 305.08 | 723.07 | 221.18 | 6520 | 0.42
110275 0 48.71 2.00 148.13 | 2.06 3.16 1.47 50.04 ] 0.28 114.01 14.36 112.79 22.80 37732 3415 [ 78.08 | 0.28
12]]02]5]03] 5717 4.21 13458 | 3.17 8.25 3.46 48.67 | 047 615.88 18.11 622.21 20.65 | 276191 | 21.92 [ 71.09 | 0.12
13 025105 72.16 4.19 120.17 3.01 7.67 3.51 47.00 | 0.37 1015.54 30.73 1013.88 28.43 1970.57 37.82 67.40 | 0.14
14 ] 02]5]07] 11577 | 942 75.39 8.86 8.84 4.71 44.72 | 0.20 || 1420.65 | 33.96 | 1416.98 | 3243 | 1162.36 | 45.08 | 65.23 | 0.08
151 02 5] 09 ] 11394 | 2061 72.09 18.02 | 13.96 9.53 45.16 | 0.65 || 1653.28 | 498.13 | 1670.09 | 494.33 | 676.63 | 215.26 | 65.95 | 1.18
16 [] 05 | 1 0 49.09 2.29 147.65 | 2.60 3.26 1.85 49.98 | 033 7742 11.37 77.83 7.80 384475 | 1541 | 78.67 | 0.13
17 [] 05 | 1] 03] 4432 6.96 143.13 | 526 | 12.54 5.90 50.30 | 0.90 622.95 35.36 629.35 3422 | 274770 | 60.17 | 71.01 | 0.35
18] 05[] 1]05] 80.15 1256 | 103.24 | 8.89 | 16.61 9.47 46.31 | 0.96 999.93 57.22 | 1006.78 | 53.95 | 1993.29 | 10233 | 6748 | 041
19 ] 05[] 1]07] 9072 14.61 90.59 12.09 | 18.63 | 12.18 | 4573 | 0.80 || 1361.34 | 69.81 1358.16 | 73.37 | 1280.50 | 137.09 | 65.48 | 0.31
20 [ 05 [ 1 ] 09 [ 101.15 | 2291 76.92 | 18.80 | 21.93 | 15.63 | 45.65 | 0.87 [ 1580.13 | 440.75 | 159521 | 417.39 | 824.66 | 321.33 | 65.73 | 1.01
of p between 0.3 ~ 0.5 in both Pigou’s (Fig. 3(a) & 3(c)) tion (TRPF) that computes utility values of the alternative

and Braess’ (Fig. 3(b) & 3(d)) networks.

In order to observe the effect of parameter 7', scenarios 2
and 3 are created by increasing the value of 7" to 3 and 5
(rows 6-15 of Table I). In other words, the drivers who have
the TRPF app use social network data (congestion reports)
from the past three and five hours to compute their TRPF
values. In rows 6-10 of Table I (scenario 2), when T is set
to 3, no further decrease in average cost can be observed.

Similarly, rows 11-15 of Table I (scenario 3) show that
with T" set to 5, there is no performance improvement when
compared with the first scenario reported in rows 1-5 (I =
1). This indicates that the past one hour’s congestion report
is enough to identify the less-congested routes.

Rows 16-20 of Table I show the results of simulations for
scenario 4 in which 50% drivers (G = 0.5) change their
routes every time they begin their journey. We set 7' to a
fixed value of 1 so that drivers having the TRPF app use data
from the past one hour to compute their TRPF values. With
these two parameters set at fixed values, we vary the value
of the parameter p. For Pigou’s network, Fig. 3(g) shows
that the amplitude of the oscillation is highest at a relatively
low value of p (> 0.5). In other words, if 50% of the
drivers change their routes in the beginning of their journey,
then the use of TRPF app results in decreased average cost
with increased oscillation. This is reflected by the increased
standard deviation values for the average number of vehicles
across all the routes for larger values of p (0.5 ~ 0.9). We
observe a similar situation in Braess’ network (Fig. 3(h)).

For the above-mentioned four scenarios, we performed
simulations multiple times to observe whether the average
number of vehicles (for the three routes) and average cost
differ. However, the standard deviations were small. For space
constraint, we do not report results from statistical analyses.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we solved the problem of selfish routing in
transportation networks by leveraging the driver’s social net-
work data. We presented the Traffic Route Preference Func-

routes for a given source-destination pair. TRPF uses posts
on congestion levels (moderate or heavy congestion) from the
driver’s social network for this computation. We emphasized
two standard traffic networks, Pigou’s and Braess’ network,
that are used to investigate the phenomenon of selfish rout-
ing. Using extensive simulations we have demonstrated that
TRPF is able to establish coordination among the drivers for
choosing alternative routes. Our main findings are as follows:

o TRPF achieves system optimum (SO) by reducing con-
gestion and decreasing the average travel time.

o TRPF is shown to perform especially well in networks
where the Nash flow is strictly pareto-dominated by the
system optimum flow.

o Braess’ paradox (as well as Pigou’s) can be resolved
without restructuring or enforcing tolls.

o TRPF approaches SO even when less than 20% of the
drivers use TRPF to choose routes.

e Oscillation becomes prominent when 50% or more
drivers change routes at the beginning of their journeys.
However, oscillation does not exacerbate the perfor-
mance. This indicates that there is a network-specific
range for parameter p that optimizes congestion control.

As future work, we intend to extend our investigation to
multi-commodity networks that have more than one origin-
destination pair. Also we plan to use learning algorithms so
that TRPF can learn how to minimize oscillations.
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