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ABSTRACT
Learning consistent policies in decentralized settings is
often problematic. The agents have a myopic view of
their neighboring states that could lead to inconsistent
action choices. The fundamental question addressed in
this work is how to determine and obtain the minimal
overlapping context among decentralized decision makers
required to make their decisions more consistent. Our
approach is a two-phased learning process where agents first
learn their policies offline within the context of a simplified
environment where it is not necessary to know detailed
context information about neighbors. These local policies
are then applied in more complex ”real” environments where
it is expected that agents will encounter a much higher
rate of inconsistencies (conflicts) with neighborhood actions.
When conflicts are observed, agents switch to ”special”states
that augment local policy states with additional non-local
state information and learn other actions to take in this
specific situation. This results in action choices that are
less likely to lead to conflicts. We evaluate our approach
by addressing meta-level decisions in a complex multiagent
weather tracking domain. Experimental results show that
our approach achieves good performance on utility and
conflict resolution by exploring only a small fraction of the
whole search space.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Performance

Keywords
Agent Reasoning; Multiagent Learning; Self-organization

1. INTRODUCTION
Locally learned agent policies can lead to inconsistent

agent actions in a multi agent context. While there are
applications where the existence of inconsistent actions
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merely leads to lower utility gains for the multi agent system
(MAS), we are specifically interested in applications where
inconsistencies could be mission-critical in that they violate
hard domain constraints like trying to use the same resource
for two different activities or where there is a dramatic
decrease in utility if the inconsistency is not addressed. This
has led to more complex models [4,7–9] of action invocations
that involve checking with other agents to ascertain that
action choices are consistent before actual action execution.
These detected inconsistencies in local policies can be
resolved to varying degrees depending on the level of effort.
For instance one simple way to resolve inconsistencies is to
have one or more of the agents engaged in the conflict to
voluntarily retract their action; other choices would involve
more complex interactions among agents. We explore the
question of what types of mechanisms can be introduced
into decentralized agent learning so that the likelihood
of inconsistent actions occurring is minimized. One way
of solving this problem is for each agent to acquire and
integrate more context information about neighbors into its
local decision-making so that it is more likely for its action
choice to be consistent with those of its neighbors. However
including detailed information about neighbors expands
the search space exponentially of each local agent. This
slows down agent learning dramatically and also introduces
additional communications.

The basic premise of this work is that when agents in a
multiagent system (MAS) have more contextual information
about the states of other agents in their environment,
then their local policies tend to be more coordinated.
Since the costs associated with obtaining such contextual
information in large state spaces can be significant, we claim
that it is beneficial to augment agents with the capability
to selectively obtain context. Our approach involves a
two-phased learning process where each agent first uses a
policy gradient algorithm to learn offline policies assuming
the context of a simplified environment wherein it is not
necessary to know detailed information about its neighbors
to get reasonably coordinated local policies. This effectively
means enlarging the state space but using default values to
represent the information about neighbors.

Agents then execute these learned local policies in online
environments where the simplistic assumptions are no longer
expected to be valid. When conflicts resulting from multiple
neighboring agents applying their local policies are observed,
the second learning phase where the agents use the same
policy gradient algorithm to learn online policies is invoked.
First a deterministic negotiation-based conflict resolution



process is used to resolve the conflicts. In more recent
work [3], this conflict resolution process was implemented
as a decentralized constraint-optimization process. If
some conflicts remained unresolved, the agents dynamically
augment the state space of the conflicting agents with new
”special” states that include information about the actual
context of the neighboring agents rather than the default
context. From the new special state, the agent then explores
actions that could potentially resolve the conflicts.

Figure 1: Agent A’s partial search tree

We now describe an example scenario to further elucidate
this idea of ”learning only where learning is needed”.
Consider two neighboring agents A and B in a MAS that
need to ensure that their actions are coordinated. Figure 1
describes agent A’s partial search tree for environment E1.
This tree is learned by agent A using a policy gradient
algorithm in the initial offline learning phase where it
assumes that agent B operates in environment E1 as well.
Once it’s search space is expanded under these simplified
assumptions, agent A’s action policy is determined offline
and then applied in a real online environment where the
environmental assumptions about B may or may not be true.

Suppose at real-time, agents A and B are operating
in the same (both agents encounter homogeneous weather
patterns) environment E1. At time T0, agent A determines
it is in state S5. It chooses the action a3 prescribed by its
offline policy for environment E1 and deliberates about this
action by identifying any conflicts that may arise with B’s
action choice. Agent A determines that there are no conflicts
and so proceeds to execute action a3.

Now consider a different scenario where agent B’s
environment is E2 instead of E1. Agent A determines it
is in state S2. It chooses action a5 prescribed by its offline
policy for environment E1 and determines that there are
conflicts with agent B while deliberating about this action.
Agent A tries to resolve the conflict using a deterministic
conflict resolution algorithm. Since it is unable to resolve
the conflict, agent A then updates its search space with a
new (special) state S9 that has accurate information about
agent B’s environmental context. Agent A then expands the
search space with state S9 as root. It uses the policy gradient
algorithm to learn that a7 is the best action to take at state
S9. Figure 2 depicts this situation. This process repeats till
coordination between he two agents is no longer needed.

We explore this two-phased learning technique as it relates
to the development of decentralized meta-level control
policies in an adaptive distributed sensor network for

Figure 2: Agent A’s search tree after expanding
special state S9

tracking weather phenomenon. The meta-level questions
involve reorganization of the underlying agent network as
well as adjusting the internal parameters of each agent when
trying to maximize the performance of the agent network.

Our work benefits from the following assumptions: the
number of special states that are added via online learning
are limited and that the learned policy has a finite
horizon; conflicts occur only with agents in the immediate
neighborhood; agents can deliberate about taking the best
action before executing the actions; and finally the policy
construction process is time constrained and can use only
up to 10% of the total deliberation time.

To summarize, the contributions of this work include
equipping agents in a real-world application domain with the
ability to learn only where learning is required while taking
real-time constraints into account. It also introduces the use
of deterministic conflict resolution strategies embedded in a
decentralized reinforcement learning framework.

The rest of the paper is laid out as follows: Section 2
discusses the real-world tornado tracking application,
NetRads and sets our work in the context of the state-of-the
art. Section 3 is the description of our approach. Section 4
provides empirical results. Finally, Section 5 summarizes
our work and outlines future directions.

2. BACKGROUND

2.1 Informed State Expansion
Wu and Durfee [12] present a solver that selectively unrolls

the search space for single agents with large state spaces. It
generates an (approximately) optimal policy while avoiding
exhaustive enumeration of all possible states. In their
work, the exploration of the state space that is likely to
be reached by the optimal policy is emphasized. Alexander
et al. [1] implemented a single agent meta-level control
scheme to determine when the agent should stop unrolling in
order to derive a partial policy while bounding the costs of
state re-prioritization. Their approach collects performance
profile information to make meta-level decisions on state
expansion. Melo and Veloso [11] augment the action space
with a pseudo-action that uses active perception to gather
information from other agents to determine the correct local
action. In our work described here, we unroll the state space
of each agent in a multiagent system using a reinforcement
learning that is informed by conflict resolution performance.



We re-prioritize the set of heuristics that guide the unrolling
using actual online performance. The novelty of our work
lies in the way it goes beyond smart space expansion by
combining it effectively with a learning strategy.

2.2 Weather tracking application domain
Netrads [10,15] is a network of adaptive radars controlled

by a collection of Meteorological Command and Control
(MCC) agents that determine for each radar where to
scan based on emerging weather conditions. The NetRads
radar is designed to quickly detect low-lying meteorological
phenomena such as storm, rotation, reflectivity and velocity.
The MCC agent can manage multiple radars simultaneously,
where each radar belongs to exactly one MCC. The time
allotted to the radar and its control systems for data
gathering and analysis of tasks is known as a heartbeat. Each
MCC agent has two choices of heartbeat: 60 seconds and 30
seconds. A shorter heartbeat allows the system to respond
more rapidly to closely track the quickly evolving weather
phenomena but with less fidelity.

Each radar has a scanning area represented by a circle
and may have overlapping scanning areas with other radars.
Two MCCs are neighbors if their radars share overlapping
scanning areas. More generally, perception overlap and/or
topologically features can be used to identify neighbors.
MCCS have partial knowledge of their environment in that
they observe the weather phenomenon and their neighbor
actions with limited scope.

There are four types of weather phenomena, namely
storms, rotations, velocity and reflectivity. A radar scanning
task in the Netrads system is a weather phenomenon that
has associated parameters such as position, radius, priority,
radar elevation, etc. For example, storms occupy a much
larger area than rotations and must be scanned at the lowest
four radar elevations, but rotations must be scanned at the
lowest six. The utility of a task from a single radar is the
priority of the task multiplied by a factor meant to represent
the quality of the data that would result from the scan. The
priority of the task is specified by experts in the field (like
meteorologists) while quality of the scan represents how well
a particular portion of the atmosphere is sensed by a given
radar configuration. For each task ti, the utility is defined
as:

u(ti) = d(ti)× q(ti) (1)

where d(ti) is determined by the priority set by the expert
user for the weather pattern and 0 ≤ d(ti) ≤ 1; q(ti)
is the function for the quality of scan for ti and q(ti) :
ti × (s1, s2, ..., sn) → r ∈ <, where sj denotes the scanning
strategy of radar j.

Data Correlation is the level of interdependency between
MCC agents and is in part based on the overlapping
characteristics of potential scanning area of a radar; it is
also based on where weather phenomena are occurring and
the speed of their movements. The amount of inter-agent
communication and coordination is generally proportional
to the degree of data correlation.

Weather scenario (WS) is defined as the abstract type of
general weather environments that NetRads is experiencing.
For example, High Rotation Low Storm (HRLS) is one
type of WS where the number of rotations is significantly
larger than the number of storms in a series of heartbeats
(e.g. lots of rotation phenomena move in followed by a
few storm phenomena, and then followed by lots of rotation

phenomena). The goal of NetRads is to maximize the sum
of the utilities of the tasks scanned in each heartbeat.

2.3 Multiagent Meta-level Control in Netrads
Each MCC agent [10] is implemented with three

deliberative-level phases within a heartbeat The phases
are: Data Processing, Local Optimization and Negotiation.
In prior work [5, 6], we introduced a Multiagent Meta-
Level Control (MMLC) phase between the Data Processing
and the Local Optimization phases. The role of the
MMLC phase is to determine the meta-level policy to
guide the deliberative-level actions in the Local Optimization
and Coordination phases in order to optimize the data
gathering process in the current heartbeat. There are
two types of MMLC actions: (1) Radar Reorganization
that involves potentially transferring the control of radars
among different MCCs and (2) Heartbeat Adaptation
that involves potentially modifying the heartbeat of MCCs.
The motivation behind identifying these questions is that
it is preferable that radars with large data correlation be
allocated to the same MCC to reduce both the amount
of communication and the time for coordination among
MCCs. Moreover, adjusting the system heartbeat allows
MCCs to adapt to changing weather conditions. A shorter
heartbeat allows the system to respond more rapidly by
closely tracking quickly evolving weather phenomena but
with less resolution.

We modeled the MMLC problem as a global optimization
problem where offline learning is used to determine the
cost-to-go/reward function. This enables agents to adapt
in knowledge-poor, partially observable environments. We
constructed a restricted class of decentralized Markov-
Decision Processes (DEC-MDPs) [2] with factored states
with the ability to communicate and model interactions so
that decisions made in one agent’s meta-level DEC-MDP are
coordinated with the meta-level DEC-MDPs of other agents.

Each agent’s MMLC state has three features with 18, 19
and 4 possible values respectively, two of these features are
vectors that contain the state information about neighbors.
In a scenario with 30 NetRads agents with 9 neighbors each,
each agent has to reason over approximately 18×199×49 ≈
1.5 × 1018 possible states. The MMLC action is defined as
an abstract representation of real action sets. A detailed
plan is an instantiation of an MMLC action. For example,
a detailed plan of the MMLC ”Move less than 10% of the
radars from MCC1 to MCC2” could be ”Move Radar R1

from MCC1 to MCC2”. The goal of the work described in
this paper is to learn MMLC policies that lead to not only
locally appropriate actions but also actions that are likely
to be consistent with the actions of other agents.

3. APPROACH
Conflicts among agent actions may occur when distributed

MCCs simultaneously apply policies. Such conflicts, if
left unresolved, have detrimental effects on the overall
performance of Netrads. We define the following types
of conflicts among agents’ policies: Local Radar Conflicts
(LRC) refer to load-balancing conflict situations in which
meta-level action choices of MCC agents fail to efficiently
balance the load of the multiagent system.; Shared Radar
Conflicts (SRC) are constrained resource related conflicts
that may arise when two or more agents attempt to move
the same radar(s).; Inconsistent Heartbeat Conflicts (IHC)



are network parameter related conflicts that occur when two
neighboring agents have different heartbeats and have to
communicate with each other during the Negotiation phase.
SRCs generally affect the system performance the most and
have the highest priority while the LRCs have the lowest
priority to be resolved.

We now provide a high-level description of our approach
called Informed Unroll and Conflict Resolution Learning
(IU-CR-L). It is a decentralized algorithm that uses
MMLC policies learned offline in homogenous weather
environments to facilitate learning policies in real-time
heterogeneous environments where different agents could
encounter different weather patterns. Each agent running
IU-CR-L specifically learns the following : (a) which
states cause conflicts and when do these states need to
be augmented with non-local information (based on on-line
performance) creating what we call “special” states. (b) the
priorities of the heuristics used to determine which part
of the search space to expand. (c) policies for “special”
states using a multiagent reinforcement learning algorithm
(MARL).

In IU-CR-L, agents first learn offline local policies for
a variety of weather scenarios based on the simplistic
assumption that for each scenario, all agents experience the
exact same weather phenomenon. These stochastic policies
can cope with the uncertainty of observation and perform
better than deterministic policies in partial observable
environment. The Scenario Library Module of the agent
stores the MDPs of each WS as well as the policies that
are learned off-line. Since the offline agent learning does not
capture the exact real-world environmental context of its
neighboring agents in the local agent state, the state space
is drastically reduced which in turn speeds up learning.

At real-time, each agent expands a small portion of its
state space as described in Procedure 1 below. The agent
then determines its initial states using observed information
about its local feature values and current environment
(weather scenario) as well as from communication with
its neighbors about data correlation and heartbeat. By
initially assuming a heterogenous weather pattern for the
neighborhood, the agent chooses the action recommended
by the appropriate offline learned policy and deliberates
with neighboring agents to determine if the action results in
conflicts. A negotiation-based conflict resolution algorithm
is harnessed to deliberate and resolve these conflicts.

If during this deliberation there is no conflict with
neighboring actions or the performance of conflict resolution
is good, then the agent remains in this ”normal state” Si

and executes the action prescribed by the offline policy.
On the other hand, if conflicts continue to persist after the
negotiation-based conflict resolution process, online learning
is activated. This involves the agent first adding a ”special
state”S′

i to the local policy space. Si contains an additional
state vector that captures current non-local information
obtained by communication with neighbors. If the special
state S′

i has been previously expanded, its best action
as prescribed by the previously learned policy is the new
action choice. Otherwise, if the special state S′

i has not
been expanded earlier, it is expanded as a sibling of the
current state Si. The policy space with this special state
S′
i as root is expanded and the policy for this subtree is

computed and augmented to the existing policy. To assist
the agents in determining the most promising actions for

overall performance improvement and expand the states
that are most likely to be encountered. We define a
set of heuristics (that are also part of conflict resolution
negotiation strategy) and equip the agents to learn the
priorities of the heuristics online. The above steps are
then repeated until the problem horizon is reached. The
agents use Policy Gradient Ascent with approximate policy
prediction (PGA-APP) [13], a multiagent reinforcement
learning algorithm, to learn both the offline policies for the
initial state space as well as the online policies for the newly
expanded parts of the tree. PGA-APP has mechanisms that
allow estimation of the local policy gradient with respect
to its neighbor’s forecasted strategy without knowing the
current strategy and the gradient of the neighbor.

3.1 The IU-CR-L Algorithm

Algorithm 1 Learning Algorithm IU-CR-L for MCCi

1: Initialize empty mdp, initState, PCR(ξ), model and
ρ(t);

2: openList← {initState};
3: mdp = init-expand(openList,model);
4: Initialize policy π as off-line optimal policy;
5: repeat
6: Determine the WS MCCi encounters;
7: Communicate and observe the current state s;
8: Consider and deliberate about action a according to
π(s, a);

9: {ψS(ξ), ψI(ξ) , ψL(ξ)} ← compute-conflicts (ξ);
10: PCR(ξ)← dec-negotiation-alg (s, a, ξ);
11: if PCR(ξ) > ρ(t) then
12: Execute action a;
13: Update π(s) using PGA-APP;
14: end if
15: else
16: Determine the special state s′;
17: if s′ is not expanded earlier then
18: Add in s′ as a sibling state of s in the mdp;
19: end if
20: Update the current state as s′;
21: a′ ← apply-heuristic ();
22: a← a′

23: mdp = informed-expand (s′, a,model);
24: Execute action a;
25: Update π(s′) using PGA-APP;
26: end else
27: until the process is terminated.

In IU-CRL-L, described in Algorithm 1, agents identify
bad states by just“deliberating”about taking the best action
at that state and predicting possible conflicts and not by
actually “executing” the best action. The algorithm tries to
identify a ”good” state that reduces the number of conflicts
and then executes the best action for that state. ψS(ξ),
ψI(ξ) and ψL(ξ) denote the number of SRC, IHC and LRC
that exists in the neighborhood ξ respectively. While it may
not be possible to deliberate about taking the best action
in some domains, it is feasible in Netrads since it is regular
practice for an MCC to coordinate with its neighbors and
recognize whether or not the action it plans to take will
result in a conflict.

init-expand(model) , discussed in detail below, expands
the initial MDP space Sinit for MCCi (line 3, Algorithm 1)



and identifies the initial state s and corresponding best
action a for the agent . It takes as input the model
parameter consists of the learned policies stored in the
Scenario Library and effectively helps determine which
action has the highest probability and therefore should be
expanded from state s. MCCi deliberates about the action
a to calculate the number of conflicts in its neighborhood
ξ (line 7-9, Algorithm 1). compute-conflicts(ξ) computes
the number of each type of conflicts in ξ. Then MCCi uses
a decentralized negotiation algorithm to resolve conflicts
in ξ (line 10, Algorithm 1). PCR(ξ) measures the
performance of conflict resolution for neighborhood ξ.
dec-negotiation-alg(ξ) is the decentralized negotiation
algorithm that assigns mediators and uses a branch and
bound algorithm [14] to deliberate about the actions to
resolve conflicts from a partially global perspective.

If the performance of conflict resolution is good (denoted
by PCR(ξ) > ρ(t)), MCCi executes a and updates the
policy π(s) and the MDP space of MCCi remains the same
(line 11-14, Algorithm 1). 1 Otherwise, MCCi searches for
the special state s′ among the siblings of s. To create s′,
an additional state vector that contains non-local context
about the neighbors is added to state s. If s′ has not been
expanded earlier, we expand it as a sibling of s (line 17-19,
Algorithm 1). The MDP space for MCCi with s′ as root is
expanded by interleaving action expansion and negotiation
(line 20-23, Algorithm 1).

apply-heuristic() is the process that uses heuristics to
select an action for expansion. It applies the appropriate
heuristic to select another action for conflict resolution.
informed-expand(s, a,model), also discussed below, is
the procedure that does selective MDP expansion from
state s and negotiation about action a to improve global
performance. The procedure works as follows: MCCi

updates its action choice a by applying heuristics in sequence
that are sorted from highest to lowest priority until the
performance of conflict resolution is acceptable or time has
run out on this cycle. The priority of each heuristic Hj

reflects the effectiveness of Hj on conflict resolution in
a specific environmental context and is learned implicitly
using multiagent reinforcement learning. MCCi expands
action a and its subsequent search space if it has not been
expanded earlier. At the end of the procedure, MCCi

executes action a and updates the policy π(s′) (line 24-25,
Algorithm 1). PGA-APP learns the transition function for
the mdp and computes the policy.

3.2 Initial MDP space
init-expand(model), the procedure in IU-CR-L that

expands the initial MDP space Sinit for MCCi is described
in Procedure 1. Each agent obtains its Sinit before online
learning begins. It then uses the learned library of policies
to determine the states and actions which are initially
expanded, Sinit is obtained as follows: MCCi identifies its
initial state s0 based on its local state feature values and also
the appropriate MDP state space and offline learned policy
π (stored in the Scenario library) for the current weather
scenario being encountered. MCCi then expands the action
a = π(s) for state s0 that has the highest probability

1ρ(t) is a system defined threshold for conflict resolution
performance that is a linear function of time t. It cannot be
manipulated by agents. Overall system performance will be
affected by the assigned value of ρ(t).

Procedure 1 mdp = init-expand(openList,model)

1: repeat
2: state← dequeue (openList);
3: action← highest-prob-action (state,model);
4: succs← suc-states (state, action,model);
5: for all succ ∈ succs do
6: mdp← update (state, action, succ,mdp);
7: if succ is not a terminal state then
8: if succ is explored by off-line learning then
9: enqueue (succ, openList);

10: end if
11: end if
12: end for
13: until openList is empty;
14: return mdp;

distribution in the policy . Every possible state s′ resulting
from this action is expanded and for s′ similarly only the
action that has the highest probability distribution in π(s′)
is expanded. This process repeats until terminal states are
reached.

This greedy expansion procedure guides the agent on what
action to execute (though it may be suboptimal) for each
state reached during execution. We set the depth of Sinit to
be 3. This is due to the fact that the horizon of the policies
for the Netrads is three heartbeat periods. We defined
this horizon manually after examining the behavior of the
Netrads application in various scenarios. If the horizon is
too short, it triggers MMLC too frequently which increases
the cost of decision making and affects performance. On the
other hand, a horizon that is too long may result in MMLC
policies that are obsolete for the latter part of the horizon,
given the dynamic nature of the environment.

3.3 Informed State Expansion

Procedure 2 mdp = informed-expand(s, a,model)

1: while termination condition is not met do
2: PCR(ξ)← dec-negotiation-alg (ξ);
3: if PCR(ξ) > ρ(t) then
4: if a is not expanded in the MDP space then
5: mdp = partial-expand(s′, a,model);
6: end if
7: update-heuristic-priority ();
8: end if
9: else

10: a′ ← apply-heuristic ();
11: a← a′;
12: end else
13: end while

Procedure 2 is the process that selectively expands
the MDP space based on the performance of iterative
conflict resolution when MCCs reach special states (line
23, Algorithm 1). partial-expand(s, a,model) expands
action a belonging to state s and the subsequent search
space in a manner similar to init-expand(s, a,model).
When Procedure 2 starts, each agent checks the termination
condition (line 1, Procedure 2) to decide whether the
MMLC phase needs to be terminated or not. We set the
following rules as the termination condition for the MMLC



phase: 1) No conflict exists among the meta-level actions of
each MCC; 2) The conflict resolution performance is good
(PCR(ξ) > ρ(t)); and 3) The time limit for the MMLC
phase is reached (this is 10% of deliberation time described
as an assumption in Section 1).

We have formulated heuristics to expand appropriate
actions (line 10, Procedure 2) and use the online learning
to dynamically adjust the most promising direction that
improves the overall performance. As discussed in
Section 2.3, there are two types of MMLC actions in Netrads:
Radar Reorganization and Heartbeat Adaptation
The Radar Reorganization action is more complicated than
the Heartbeat Adaptation action. It includes detailed actions
that require deliberation of the specific type of radar
movement as well as the direction of radar movement.
‘Heavy Move’ and ‘Light Move’ are two different types of
radar movement. The former moves a large amount of
radars to neighbors while the later moves few to decrease
the load of the MCC. For example, one action for Radar
Reorganization could be ‘Heavy Move(MCC1 to MCC2)’
which means MCC1 applies a ‘Heavy Move’ and the radars
are moved to MCC2 (the direction of radar movement)..
The Heartbeat Adaptation action has two action choices:
‘Use 30 seconds heartbeat’ and ‘Use 60 seconds heartbeat’.
Each heuristic is a preferred conflict resolution mechanism
for a particular situation. The agents learn the priority of
each heuristic online and use the heuristics to decide which
action to take when a special state is encountered. We
define three elementary heuristics that facilitate state space
expansion by exploring a new action that has:

• H1: a different type of radar movement from the
current action choice. This heuristic helps in situations
where the data correlation existing among overlapping
areas is high.

• H2: a different direction of radar movement from the
current action choice. This heuristic helps in situations
where the agent was planning to move its radars to
already heavily loaded neighbors.

• H3: a different heartbeat from the current heartbeat
choice. This heuristic helps in situations where the
agent’s heartbeat differs from those of most of its
neighbors.

H4, H5 and H6 are the heuristics that enforce two of the
above three elementary heuristics. For example, H4 is the
heuristic that the agent expands its MDP space by exploring
a new action that has a different type as well as a different
direction of radar movement from the current action choice;
H7 enforces H1, H2 and H3. We use heuristic H8 to denote
that an agent does not change its current action.

Initially, there is no prior knowledge about which heuristic
works best for MCCi in a specific special state. For
MCCi, we define χi,j (j = 1, 2, ..., 8) as the priority that
measures the effectiveness for applying heuristic Hj for
MCCi. update-heuristic-priority() updates the priority
for each heuristic based on the actual performance on
conflict resolution (line 7, Procedure 2):

χi,j ←
χi,j ×Nsum

i,j + PCR(ξ)

Nsum
i,j + 1

(2)

where Nsum
i,j is the total number of Hj that has been applied

for MCCi up to now.

4. EVALUATION
For the experiments reported here, we use a simulation

environment of Netrads developed in the Farm simulator
framework [10]. We evaluate the IU-CR-L algorithm on
scenarios with 12 agents controlling 72 radars altogether;
each scenario contains heterogenous WSs in different parts
of the system based on the distribution of the tasks. A task
represents a weather event and we are only concerned about
rotation and storm tasks in the evaluation. The number of
tasks varies from 80 to 200 for each scenario. There are nine
types of possible WSs occurring in the system, and they are
differentiated by the number of these two tasks. Each MCC
has two choices of heartbeat: 30 seconds long or 60 seconds
long.

Figure 3: Utility of the four algorithms for 12 MCCs,
for various number of training episodes.

We generate the training/test episodes by varying the
following parameters: number and types of tasks; initial
heartbeat for each MCC; the percentage of pinpointing
tasks relative to all tasks ( PTaskRatio). Pinpointing tasks
generally require more agent coordination and often lead to
higher total utilities. Utility measures the overall utility
of a given configuration of radars for task scanning in a
heartbeat. In the experiments, ρ(t) = −0.2 · t+ 0.8.

We compare the results of four approaches: IU-CR-L, IU-
CR-H, IU-CR and No-IU. IU-CR-L is the learning approach
discussed in Section 3 that iteratively expands the MDP
search space, uses a decentralized negotiation algorithm to
resolve conflicts, updates the priorities of heuristics and uses
PGA-APP to update the policy. IU-CR-H uses the eight
heuristics described in the previous section to expand the
search space and learns their priorities online based on the
conflict resolution performance . It does not use PGA-
APP to update the policy. IU-CR is similar to IU-CR-L
with the only difference being that it expands all the action
choices instead of using heuristics to selectively expand the
promising action choice. No-IU is the PGA-APP-based
online learning approach that applies scenario appropriate
policies learned offline and does no conflict resolution. It
does not do any learning of special states but does continue
to update its policies based on new experiences.

The comparison of the four approaches is to show (a)
the effectiveness of using policies learned in simplified
environments where possible; and (b) coordinating with
other agents only when necessary via the smart expansion
of the agent’s state space. We empirically show that IU-
CR-L learns useful policies for agents with a small amount
of training episodes. Also, IU-CR-L achieves significantly
better performance on utility and conflict resolution by



expanding a small fraction (only 10% in the best cases) of
the whole search space.

The Scenario library was populated with policies learned
offline for a number of weather scenarios. These offline
policies were based on 1000 training cases for each scenario.
We then used 10000 training cases to learn the policies for
the three online algorithms. We compared the performance
of the resulting learned policies for different amounts of
training. The results reported are the average values of 30
test episodes. In Figure 3, we observe that IU-CR, IU-CR-
H and IU-CR-L perform significantly better than No-IU on
Utility for all the training episodes. Conflict resolution helps
to improve the overall performance on Utility.

We also observe that IU-CR performs better than IU-
CR-L on Utility when 100 training episodes are used for
online learning; this is because the heuristics with inaccurate
priorities early in the learning stage may lead to incorrectly
biased expansion of actions. As the number of training
cases increases, the state space of each agent using IU-
CR-L is more accurate about the neighbors’ environmental
states; and the actions that resolve conflicts have been
frequently explored and executed. These two factors lead to
improved performance of IU-CR-L with increased training.
The results show that online PGA-APP is advantageous and
it helps each agent to learn the scenario appropriate policy
that improves the overall performance significantly.

Figure 4 shows that IU-CR and IU-CR-L achieve
similar conflict resolution performance after 10000 training
episodes. IU-CR reduces the number of unresolved conflicts
by 78%, 76% and 68% for the 20%, 60% and 90% PTaskRatio
cases respectively compared with No-IU ; IU-CR-H reduces
the number of unresolved conflicts by 53%, 56% and 54%
while IU-CR-L reduces the number of unresolved conflicts
by 75%, 71% and 74% for the three PTaskRatio cases
respectively. IU-CR-H does not do as well in reducing
conflicts because it does not have the advantage of using
PGA-APP to update policies.

Table 1: Comparison results between IU-CR and
IU-CR-L after 10000 training episodes.

Approach # of states
expanded

# of special
states

expanded

Expansion
time (sec.)

IU-CR 382765303 1547 1.56
IU-CR-H 17432685 1084 0.084
IU-CR-L 12097539 862 0.084

Table 1 shows that for IU-CR, IU-CR-H and IU-CR-L,
the special states added to the search space are limited. IU-
CR-H and IU-CR-L expand significantly fewer states than
IU-CR (95.5% and 96.8% less states respectively). Among
these expanded states, only a small fraction (< 0.01%) are
visited during learning. Each learned policy associated with
an encountered special state is iterated on average 437 times
for 10000 training episodes.

In IU-CR-L, the heuristics help to balance the benefits of
expanding more states and being selective in the direction
of expansion. Although IU-CR-L learns fewer new special
states compared to IU-CR and IU-CR-H, its policies
perform better on Utility (see Figure 3). IU-CR-L suggests

a new action for a special state 31.8% of the time; while
IU-CR-H does so 13.5% of the time. In IU-CR-L, PGA-
APP contributes to the learning of the expanded actions
and thus leads to the scenario appropriate policies. IU-
CR spends significantly more time (1.56 secs compared to
0.084 secs) on expansion of special states compared to IU-
CR-H and IU-CR-L. This is because when IU-CR reaches
a special state, it expands all the possible actions and
expands the resulting search space of the actions which is
time consuming.

Table 2: Comparison of effectiveness IU-CR-
L’s state expansion with the increase of training
episodes.

# of
training
episodes

# of states
expanded

# of
special
states

ex-
panded

Average # of
actions
expanded at
special states

100 790538 46 2.3
500 3012334 110 5.6
1000 3587659 137 5.1
4000 9347893 594 4.6
10000 12097539 862 3.4

Table 2 shows that the percentage of new states expanded
using IU-CR-L is decreasing substantially with the increase
of training episodes. During the earlier learning stage (from
100 to 500 training episodes), many new special states are
encountered that results in a faster rate of growth of the
search space. As learning progresses, the probability of
expanding new special states decreases. IU-CR-L expands
281% and 19.1% more states when number of training
episodes increases to 500 and 1000 respectively.

Since the dominant heuristics are more likely to be chosen
in the earlier stages of learning; the average number of
actions expanded at special states is low. When more
training episodes are encountered, the number of heuristics
that are applied increases because of the uncertainty of
conflict resolution. So the average number of actions
expanded also increases (5.6 compared to 2.3 in Table 2). As
significant number of training episodes are encountered, the
priority of each heuristic becomes more and more accurate.
Consequently, the special states expanded later in the online
learning apply the few dominant heuristics more often.
For this reason, the average number of actions expanded
at special states decreases (5.1, 4.6 and 3.4 respectively
compared with 5.6 in Table 2). This shows that IU-CR-L
learns the effectiveness of applying each heuristic.

5. CONCLUSIONS AND FUTURE WORK
In this work, we present a decentralized learning algorithm

that harnesses off-line policies that are learned within the
context of a simplified environment and selectively expands
the search space acquiring on-line nonlocal state information
in case of conflicts. When conflicts resulting from multiple
neighboring agents applying their local policies are observed,
agents switch to “special” states that augment local policy
states with additional non-local state information and learn
other actions to take in this specific situation. The



Figure 4: Number of conflicts (LRC, SRC and IHC) unresolved by the three algorithms for 12 MCCs, for
PTaskRatio to be 20%, 60% and 90%.

agents are equipped with capabilities to learn on-line: (a)
the trigger conditions for “special” states (b) priorities of
heuristics and (c) policies for “special” states. The work
contributes towards understanding the differences between
tabula rasa learning and informed learning in rich knowledge
based systems. Experimental results show that our approach
achieves good performance on utility and conflict resolution
by expanding only a small fraction of the whole search space.
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