
Contingency Analysis in the Design-to-CriteriaSchedulerAnita RajaComputer Science DepartmentUniversity of MassachusettsOctober 9, 1998AbstractThe Design-to-Criteria scheduler is a domain independent system that schedulescomplex AI problem solving tasks to meet real-time performance goals. In this paper,we further extend the scheduler to more e�ectively deal with uncertainty present in aschedule which can be critical in hard deadline or hard cost situations. This is basedon an analysis of available schedules that can be used to recover from a situation inwhich partially executed schedules cannot be completed successfully. In addition toevaluating schedules e�ectively from the uncertainty perspective, we also implementmethod reordering techniques to minimize uncertainty.1 IntroductionThe Design-to-Criteria scheduler [Wagner97a, Wagner98] is a real-time system that sched-ules complex AI problem solving tasks to meet real-time performance goals. Problemsolving tasks are modeled in the domain-independent T�MS (Task Environment Model-ing and Simulation) framework [Decker95, Decker93]. T�MS is a compiled network ofplan alternatives that describes complex problem solving processes in terms of alternateways by which problem solving goals can be achieved. It also speci�es the performanceand resource requirements of these di�erent approaches. A simpli�ed example of a T�MStask structure for searching the Web for information on reviews on Adobe Photoshop isshown in Figure 1. The scheduler determines a particular path to achieve a goal as wellas the speci�c order of execution of the subtasks associated with this path. It uses a com-plex user-de�ned scheduling criteria [Wagner97a] that takes into account the performancecharacteristics such as cost, quality and duration in the overall schedule and amount ofuncertainty with respect to these characteristics.In this paper, we further extend the scheduler to more e�ciently deal with uncertaintypresent in a schedule. This is based on an analysis of available schedules that can beused to recover from a situation in which partially executed schedules cannot be completedsuccessfully. In addition to evaluating schedules more e�ectively from the uncertainty

perspective, we also implement method reordering techniques to minimize uncertainty.The Design-to-Criteria scheduler with its present functionality does some reordering ofsubtasks within a schedule [Wagner97b] but it does not reason about whether there areways to recover from failure scenarios.We de�ne schedule robustness as a characteristic of a schedule in which the scheduleallows for recovery from execution failure of one of the scheduled actions. In evaluating aschedule, we want to take into account whether there exist alternative ways of completingthe schedule, i.e., achieving the high level task, if the schedule should fail during the courseof execution. This type of analysis, called contingency planning can be expensive because itcould involve an exhaustive search for the appropriate method that would improve sched-ule robustness without diminishing the criteria requirements [Bresina94]. However, thetechnique we describe in this paper implements an algorithm which eliminates the needto do an exhaustive search, even though it is more expensive than our non-contingencyscheduling approach.In this paper, we discuss contingency scheduling issues and formalize them using �vestatistical measures of schedule robustness. We then present a computationally feasiblealgorithm for building robust schedules and demonstrate their e�ciency via experimentalresults.2 Background WorkClassical AI planning work has precluded the issue of planning for contingencies in theevent of plan failure. It adopts a very narrow notion of assuming a all-or-nothing ap-proach. Recent work in conditional planning however has focussed on solving problemswhich involve uncertainty by probabilistic reasoning about actions and information on thevalue of planning for alternative contingencies [Draper94, Kushmerick94] and using utilitymodels [Haddaway98]. Other approaches use Partial Markov Decision Processes and de-cision theoretic planning approaches [Boutilier95, Dean95] which prune the search spaceby using domain-speci�c heuristic knowledge. [Onder97] describes a partial-order plan-ner called Mahinur that supports conditional planning with contingency selection. Theyconcentrated on two aspects of the problem, namely, planning methods for an iterativeconditional planner and a method for computing the negative impact of possible sourcesof failure. We found that our work done using the Design-to-Criteria framework addressessimilar questions namely1. How can we e�ectively predict the performance of a schedule when there is uncertaintyin the performance of methods in the schedule?2. What are the di�erent approximations to the execution-time performance measureand when is a speci�c approximation appropriate?[Bresina94] discusses an algorithm for a speci�c domain namely a real telescope schedul-ing problem where the stochastic actions are managed by a splitting technique. Here theJust-In-Case scheduler pro-actively manages duration uncertainty by using the contingentschedules built as a result of analyzing the problem using o�-line computations.Our work di�ers from previous work done in following ways2

(B)

On-Adobe-Photoshop

(A2) (A3)

D (100% 3)

C (100% 3)

Q ((90% 4) (10% 0.5))

subtasks
enables

Search-Adobe-URLQuery-Benchin-Site
(A)

Find-User-Reviews

Q ((25% 0)(75% 3))

C ((30% 5)(70% 3))

D (100% 9)

Process-User-Reviews

Process-Document-Using-

Q ((20% 1)(80% 0.5))

D ((80% 6)(20% 8))

Advanced-Text-Processing

C ((15% 5)(85% 3))

End-User-

Benchmarks

(A1)

Q ((50% 2)(25% 1)(25% 0.5))

D (100% 6)

(P)

Find-Review-Information-

C ((25% 6)(75% 3))

enables

Method

Task

min()

min()

max()

Figure 1: Gather review information on Adobe Photoshop.1. Construction of contingent schedules in our analysis is done in interactive time evenas the problem is being solved and hence we have real duration and cost constraintsin evaluating the entire search space.2. We constantly evaluate the user speci�cations with the criteria constraints to get asatis�cing yet robust result.3. Our algorithm takes advantage of the structural analysis of the problem, namely theT�MS task structure representation, to reduce the complexity of the search problem.3 The Expected Lower Bound and the ApproximateExpected BoundThe motivation for evaluating performance measures for contingency planning is the follow-ing. \Di�erent approximations of execution-time performance measures represent di�erentamounts of work in handling contingency scheduling. We want to evaluate these approxi-mations based on the amount of work and the performance trade-o�s."3.1 An Information Gathering exampleWe describe a simple example which concisely captures the complexity and functionalityof contingency analysis.T�MS models are comprised of tasks,methods, which are executable tasks or primitives,and non-local-e�ects (NLEs). Tasks are non-executable methods which are decomposedinto subtasks, methods, or both. T�MS methods are described statistically via discreteprobability distributions in three dimensions: quality, cost and duration. Quality in thegiven �gure describes the contribution of a particular action to the top level task. Duration3

describes the amount of time a method will take to execute and Cost describes the �nancialor opportunity cost inherent in performing the action modeled by the method.The oval nodes in Figure 1 are tasks and the rectangular nodes are methods. Thetop level task is Find-Review-Information-on-Adobe-Photoshop. This high level task canbe achieved by either completing task Query-Benchin-Site(A) successfully or executing themethod Search-Adobe-URL(B) or both. If both A and B are executed the maximum qualityis taken. This is described in T�MS by means of the max() quality accumulation function(qaf), which has semantics similar to an \OR" in logic. Method End-User-Benchmarks (A1)and task Process-User-Reviews(P) 1 need to be scheduled for task Query-Benchin-Site toachieve a non-zero quality. This relationship is described by means of the min() qaf whichis equivalent to an \AND" and the minimum quality value from the sub methods is chosen.This forces the scheduler to schedule both tasks to avoid a 0 quality being propagated bythe min() qaf.The quality, cost and duration criteria for the executable methods are described interms of the di�erent possible outcomes and their frequency of occurrence computed asa percentage. For instance, in Figure 1, method End-User-Benchmarks has the followingquality outcome distribution Q ((50% 2)(25% 1)(25% 0.5)). It achieves quality value of 2with probability 0.5, quality of 1 with probability 0.25 and 0.5 with probability of 0.25.The enables NLE between methods Find-User-Reviews(A2) and Process-Document-Using-Advanced-Text-Processing(A3) indicates that Find-User-Reviews needs to incur anon-zero quality for Process-Document-Using-Advanced-Text-Processing to be executed.A facilitates NLE describes a soft relationship between methods, where a non-zero qual-ity achieved by the facilitator method allows the expected performance of the facilitatedmethod to improve by the degree of facilitation; however the facilitated method can stillbe executed with the facilitator achieving a non-zero quality or for that matter not evenbeing scheduled.The expected quality of results achieved by executing task Query-Benchin-Site is higherthan Search-Adobe-URL and thus preferred. However it is possible that for certain prod-ucts, Benchin does not contain user reviews for the product with a probability of 0.25and hence receives a quality of 0. If Query-Benchin-Site is the only path selected, thenFind-Review-Information-on-Adobe-Photoshop in turn results in zero quality. In this sce-nario, we would have preferred method Search-Adobe-URL which has a 100% guarantee ofachieving the top-level goal even if it is of lower quality.Lets assume the criteria requirements state that the task should achieve the maximumquality possible within a duration deadline of 18 minutes. The Design-to-Criteria scheduler�rst enumerates a subset of the alternatives that could achieve the high level task. An alter-native is an easy to compute schedule approximation with an estimate for quality, cost andduration distributions that will result from scheduling the alternative. A subset of thesealternatives are selected and schedules are created using a heuristic single-pass method-ordering technique. The set of candidate schedules are then ranked using a sophisticatedmulti-dimensional evaluation mechanism [Wagner97a] which compares the schedules' sta-tistical attributes to scheduling design criteria, e.g., quality, cost, duration and uncertaintymeasures, provided by scheduler clients.1A method which does not execute takes on a default quality value of zero.4

For the sake of simplicity, we have modi�ed and simpli�ed the scheduler's criteria-driven evaluation mechanism to make this example and the related comparisons succinct;that is we have focussed only on the expected quality attributes of schedules and ignoredthe multi-dimensional and relative scaling components of the scheduler's standard utilitycalculation. The term rating in the remainder of this document will denote the expectedquality of a given schedule and nothing more.3.2 Expected Lower Bound RatingIn this paper, we will call the objective function based rating returned by the standardDesign-to-Criteria scheduler the Expected Lower Bound(ELB) and view it as the statisticalmeasure of the characteristics of a schedule assuming no rescheduling.For the example described in the earlier section, we will focus on maximizing qualitywithin a hard deadline of 18 minutes. The two possible schedules are fA1,A2,A3g and fBg.The ELB takes into account the various possible permutations of method outcomes alongwith the quality achieved. Figure 2 describes the computation of the ELB ratings for theschedule fA1,A2,A3g.A1 A2 A3 Frequency Quality50% 2 25% 0 nil 5%*25%=12.5% 0.050% 2 75% 3 90% 4 33.75% 2.050% 2 75% 3 10% 0.5 3.75% 0.525% 1 25% 0 nil 6.25% 0.025% 1 75% 3 90% 4 16.875% 1.025% 1 75% 3 10% 0.5 1.875% 0.525% 0.5 25% 0 nil 6.25% 0.025% 0.5 75% 3 90% 4 16.875% 0.525% 0.5 75% 3 10% 0.5 1.875% 0.5Figure 2: Each row represents a possible permutation of the quality distributions of meth-ods A1, A2, A3 in schedule fA1,A2,A3g. The �rst three columns represent the possibleratings(Quality) achieved by each of the methods A1, A2, A3. The fourth column showsthe probability of the particular quality distribution combination occurring and the lastcolumn shows the �nal quality of the schedule.Consider the �rst entry of the table. It handles the case when method A1 achievesa quality of 2, which occurs with a probability of 0.5 as described in the T�MS taskstructure. Method A2 achieves a quality of 0 with probability 0.25. 2 The probability ofthe methods achieving these qualities simultaneously in a single execution is 0.125, givenin column 4. The expected quality of the schedule fA1,A2,A3g is 0 in this case, describedin column 5. The duration and cost distributions and their expected values are computedin a similar fashion. The ELB ratings for schedules fA1,A2,A3g and fBg are given below.2Failure of A2 (Quality = 0) automatically results in zero quality for the schedule due to the speci�csof the concerned task structure. Hence the quality of A3 is a not a determining factor and is representedby nil. 5

1. fA1,A2,A3g: Rating: 0.97 (Expected Quality)Quality : (25% 0.0) (24% 0.5) (17% 1.0) (34% 2.0)Duration : (100% 18)2. fBg: Rating 0.6 (Expected Quality)Quality : (20% 1) (80% 0.5)Duration: (80% 6) (20% 8)This example is amenable to the contingency-tree style calculation as shown in Figure3 , but the general case is not. In the case of task structures with signi�cant levels ofcomplexity, the computation of the ELB by the Design-to-Criteria scheduler is not basedon a contingency-tree style analysis, due to the combinatorics of the general schedulingproblem. In this particular example, the ELB would then be an underestimate of expectedschedule quality and the ratings would be as follows.1. fA1,A2,A3g: Rating: 0.72 (Expected Quality)Quality : (44% 0.0) (18% 0.5) (13% 1.0) (25% 1.0)Duration : (100% 18)2. fBg: Rating 0.6 (Expected Quality)Quality : (20% 1) (80% 0.5)Duration: (80% 6) (20% 8)We use limited tree expansion in situations such as these where it is not precluded by thecombinatorics of the actual scheduling instance. In other instances, where the complexity ofthe task structure is signi�cant, heuristics are used for approximating schedule performanceto be able to handle the combinatorics.The schedule fA1,A2,A3g is chosen and executed since it has the best expected lowerbound rating of 0.97. A1 executes successfully , then A2 executes and suppose A2 fails (i.e.it results in 0 quality), which happens 25% of the time. Then A3 fails to get enabled andthe schedule breaks since there is no time left to reschedule fBg as an alternate schedule.Because of the one-pass low-order polynomial method sequencing approach used by thescheduler to control scheduling combinatorics, the standard Design-to-Criteria schedulerwill only produce one permutation of the methods A1, A2, and A3. However, if thescheduler did produce multiple permutations, the schedules fA1,A2,A3g and fA2,A1,A3gwould receive the same expected lower bound value. Hence the contention is that there isno di�erence in performance if either of the two was chosen, or produced by the methodordering heuristics. However on more detailed evaluation of the schedules, we see thatfA2,A1,A3g allows for recovery and contingency scheduling which schedule fA1,A2,A3gdoes not permit (Figure 3) for the given deadline. If fA2,A1,A3g is the schedule beingexecuted and A2 fails, there is time to schedule method fBg and complete task TG1. Thisclearly implies that schedule fA2,A1,A3g should have a better expected performance ratingthan fA1,A2,A3g as the schedule fA2,A1,A3g includes the recovery option from failure inits structure.
6

(ELB = 0.00; AEUB = 0.00)

A2

A1

TG1 A2

A3 A1

B

A3 (ELB = 0.97; AEUB = 1.29)

(ELB = 0.97; AEUB = 1.29)

A1

BFAIL
(freq. 25%)

(ELB = 0.60; AEUB = 0.60)

(ELB = 0.60; AEUB = 0.60)

A3 (ELB = 0.97; AEUB 1.29)

FAIL
(freq. 25%)

Figure 3: Schedule options for example one with (schedule rating) values.3.3 Approximate Expected Upper Bound, Approximate ExpectedBound, Critical Task Execution RegionsIn our example, task A2 has an enables non-local e�ect [Wagner97a] as well as a 25%chance of failure within its distribution. We hence predict that task A2 could potentiallybe a critical task execution region(CTER). A CTER is a set of possible outcomes of methodexecution which if occurred would seriously degrade the performance characteristics of theoverall schedule. In order to understand the implications of this potential CTER, let usremove the failure possibility from the performance characterization of A2 and replacemethod A2's 25% chance of quality 0 by the expected value of the distribution. MethodA2 hence is assigned a quality of 3, with a probability of 1 i.e for method A2, Q (100%3). The Design-to-Criteria scheduler is reinvoked with the modi�ed task structure andreschedule. The following are the ratings returned by the scheduler.1. fA1; A2success; A3g: Rating 1.29 (Expected Quality)Quality : (32% 0.5)(22% 1.0)(45% 2.0)Duration: (100% 18)2. fBg : Rating 0.6 (Expected Quality)Quality: (20% 1) (80% 0.5)Duration: (80% 6) (20% 8)The performance measure for the modi�ed task structure is no longer the expectedlower bound, instead it is the approximate upper bound as it describes the expectationsif failure is not possible. The schedule fA1,A2,A3g now receives a rating of 1.29. The1:29�0:970:97 � 100 = 33 % improvement in quality with respect to the expected lower boundrating is signi�cant. This 33% improvement in performance measure con�rms that thepossibility of failure of method A2 signi�cantly decreases the rating of schedule fA1,A2,A3g.So now we consider the optional schedules for the original task structure to neutralize thee�ect of this CTER. 7

The tree structure in Figure 3 presents all the options of schedule generation that willmeet the criteria of a duration limit of 18 minutes. From this diagram, we see that schedulefA1; A2; A3g does not have an option to reschedule and still meet the deadline, if methodA2 produces an undesirable outcome.So we consider a simple reordering of schedule fA1; A2; A3g which is fA2; A1; A3g. Toassess the e�ects of rescheduling when A2 fails on this schedule fA2,A1,A3g, we combinethe ratings for schedules fA2success; A1; A3g and fA2failure; Bg based on their likelihoods ofoccurrence. So a schedule starting with A2 gets a rating of 75100�1:29+ 25100�0:60 = 1:1175:Weuse a similar analysis to get the values of schedules starting with A1 = 75100 �1:29+ 25100 �0 =0:9675 and B = 1 � 0:60 = 0:60This type of evaluation of the schedule is what we call the Approximate ExpectedBound(AEB), which will be formally de�ned in the next section.So schedule fA2; A1; A3g has a better performance guarantee than fA1; A2; A3g. TheELB computation of the Design-to-Criteria scheduler evaluates the performance measureof both fA1; A2; A3g and fA2; A1; A3g to be the same as it does not take into accountthe recovery options present within fA2; A1; A3g while evaluating it. This leads us tobelieve that the ELB perhaps is not the most appropriate performance measure for all taskstructures, particularly where hard deadlines or cost limits (in contrast to soft preferences)are important.
QUALITY

0

10

20

30

0 10.5 21.5

Histogram OF Quality[Simulation-Using-Elb-Measure]

QUALITY

-20

-10

0

10

20

30

40

0.5 1 21.5

Histogram OF Quality[Simulation-Using-Aeb-Measure]Figure 4: Statistical Performance of schedules with highest ELB and AEBThe bar graph on the left of Figure 4 shows the statistical performance of the schedulewith the highest ELB for 100 simulation runs. A simulation run is a simulated executionof the schedule with highest ELB and the actual quality, cost and durations values areaveraged over the number of simulations to obtain a statistical rating. We note that theschedule fails to achieve any quality about 20% of the time. The mean quality achieved byusing this performance measure is 0.98.The bar graph on the right Figure 4 describes the statistical performance data for theschedule with the highest AEB over 100 simulation runs. Here 100 simulated executionsof the schedule with the highest AEB rating produce the data. As seen in the histogram,the quality of the schedule with the best AEB rating is always a non-zero value due to thebuilt-in contingency and the mean quality achieved here is 1.96.
8

4 Performance MeasuresIn this section we try to formalize a general theory relating to the concepts on contin-gency discussed in the previous section. The question we strive to answer formally here isthe following: What performance measure is the most appropriate estimator of the actualexecution behavior of a schedule the criteria conditions?Our basic approach is to analyze the uncertainty in the set of candidate schedules tounderstand whether a better schedule can be selected or an existing schedule can be slightlymodi�ed such that its statistical performance pro�le would be better than that normallychosen by the Design-to-Criteria scheduler.Some basic de�nitions are given below:1. A schedule s is de�ned as a sequence of methods (m1;m2;::mn�1;mn).2. Each method has multiple possible outcomes, denotedmij, where j denotes the j'th outcomeof method mi.3. Each outcome is characterized in terms of quality, cost, and duration, via a discrete prob-ability distribution for each of these dimensions.4. mcrij is a CTER when the execution of mi results in outcome j which has a value or setof values characterized by a high likelihood that the schedule as a whole will not meet itsperformance objectives.5. A schedule scrij is called a critical path if it is de�ned as (m1::;mi�1;mcrij ;mi+1; ::mn�1;mn).The performance characteristics of scrij are not likely to meet successful overall performancecriteria desired for the schedule.6. f crij , the frequency of occurrence of a path scrij , is de�ned as the probability of the path scrijbeing executed with the associated outcomes of a speci�c method(i.e. mcrij).7. mcrij ismcrij with its current distribution being redistributed and normalized after the removalof its critical outcome. In other words, the criticality of mcrij is removed and the newdistribution is called mcrij .8. scrij is the schedule (m1::;mi�1;mcrij ;mi+1;:::mn�1;mn:)We describe �ve statistical measures for a speci�c single schedule:1. Expected Lower Bound (ELB)The expected lower bound rating, of a schedule sij, is the performance measure of a sched-ule execution without taking rescheduling into consideration [Wagner97a]. It is a expectedrating because it is computed on a statistical basis taking quality, cost and duration dis-tributions into account.Given a schedule s = (m1::mn), we can compute the ELBfsg, for a criteria namelyquality in the following manner:Let the possible values for quality of the schedule s be q1::qp. For each schedule qualityqk, we use the corresponding set of outcomes m1jqk ; m2jqk ; :::mnjqk and their frequencies ins and Pqk prodni=1fijqk) will give the expected frequency of qk: A similar computation isdone for the cost and duration criteria values of schedule s. As mentioned earlier, the ELBcomputation in this paper is an underestimate of the expected value as the computationhas been restricted by the combinatorics of the general scheduling problem.9

2. Approximate Expected Upper Bound (AEUB)It is the statistical schedule rating after eliminating all regions where rescheduling couldoccur. The assumption is that there are no failure regions and hence the schedule willproceed without any failures and hence no rescheduling will be necessary. The following isa formal de�nition of AEUB:Suppose mcrij is a region in the schedule s = (m1::mn) and it occurs with frequency f crij .Let scrij = (m1; m2::mcrij ::mn).If ELB(scrij)�ELB(s)ELB(s) � �, then mij is a CTER, where � is a domain dependent measuregiving an upper bound for the improvement in the schedule performance prediction.For our Information Gathering example, we see that ELB(fA2;A1;A3g)�ELB(fA1;A2;A3g)ELB(fA2;A1;A3g) �0:3. Hence there is at least an 30% increase in the schedule rating if the likelihood of failureof A2 is removed.When this computation is done on an entire schedule for all of its CTER's, we call it theApproximate Expected Upper Bound. Generalizing this formula for k CTER's mi1j1:::mikjk ,AEUB(s) = ELB((m1:::mi1�1; mcri1j1::mcri2j2:::::::mcrikjk :::mn)).The AEUB is thus the best rating of a schedule on an expected value basis without anyrescheduling.3. Optimal Expected Bound (OEB)It is the schedule rating if rescheduling were to take place after each method execution. Sothe �rst method is executed, a new scheduling subproblem which includes the e�ects of themethod completion is constructed and the scheduler is re-invoked. The �rst method in thisnew schedule is executed and the steps described above are repeated. Hence the optimalschedule is chosen at each rescheduling region. For complex task structures, the calculationwould require a tremendous amount of computational power and it is unrealistic to use itfor measuring schedule performance in a real system.In most situations, ELB(s) � OEB(s) � AEUB(s); since the OEB(s) is based onrecovery from a failure while AEUB(s) assumes no failure.4. Expected Bound (EB)Let mei be the set of values for the actual outcome class when method mi is executed.After each method execution the schedule is re-rated. If for some mei , ELB((m1:::mn))�ELB((me1; me2:::mei ; mi+1::mn)), then a new schedule is constructed based on the partiallycomplete schedule fme1; me2; :::meig. The determination of whether the ELB rating of aparticular schedule is signi�cantly greater than the ELB rating of another is done usingSo the EB is the schedule rating when rescheduling occurs only when there is a possi-bility for the partial execution of the current schedule will fail to meet expected criteria asa result of the outcomes of methods already executed. This computation, like the OEB,will require extensive computational power. Again in most situations, ELB(s) � EB(s) �OEB(s) � AEUB(s).
10

5. Approximate Expected Bound (AEB)It is the schedule rating with rescheduling only at a CTER and using expected lower boundof the new stable schedule for methods following the CTER. This is limited contingencyanalysis at CTER's.Consider a schedule s of n methods m1; m2::mi::mn. Now suppose mij is a CTER with afrequency of occurrence of fij. In order to compute the AEB of the schedule, we replace theportion of the schedule succeeding mcrij , which is mi+1; mi+2; ::::mn by li+1; li+2::::::lk if thereexists a li+1; li+2::::::lk such that ELB(m1:::mcrij ; li+1:::lk) � ELB(m1:::mcrij ; mi+1:::mn).The Approximate Expected Bound for this instance is computed as follows:AEBij(m1; ::::mn)=ELB(m1:::mcrij ; mi+1::mn) � (1� fij)+ ELB(m1::mcrij ; li+1::lk) � fij.The new schedule rating thus includes the rating from the original part of the scheduleas well the ELB of the new portion of the schedule. This is basically the calculationdescribed when the AEB was introduced in a previous section.Now we describe the general case scenario. Letm1; m2; m3; :::mi:::mn be a schedule s of nmethods with k CTER's namedmcri1j1; mcri2j2:::mcrikjk . Let the recovery path available at eachCTERmcrij be srij and eachmcrij occurs with frequency f cri . The AEB of the entire schedule isdescribed recursively as AEB = ELB(m1:::mcrij ; l1; :::lk)�f cri +AEB(m1:::mcrij ; mi+1; :::mn)�(1� f cri) which can be expanded out as follows:AEB = f cr1 � ELB(m1:::mi1�1; mcri1j1; la1:::lb1)+(1� f cr1) � f cr2 � ELB(m1:::mcri1j1 :::mcri2j2; la2:::lb2)+ ...(1� f cr1) � ::: � (1� f crk�1) � f crk � ELB(m1:::mcri1j1:::mcri2j2 :::mcri3j3:::mcrikjk ; lak:::lbk)+(1� f cr1) � (1� f cr2) � ::: � (1� f crk) � ELB(m1:::mcri1j1:::mcri2j2 :::mcrikjk :::mn)| {z }AEUBThe above computation produces an approximate measure since we use theELB(m1::mij; li+1::lk). A better and more exact computation would be to use theAEB(m1::mij; li+1::lk). So if we recursively re�ne the ELB(m1::mij; li+1; ::lk), the schedulerating approaches the expected bound (EB). Thus, the deeper the recursion in the analysisof CTER's, the better the schedule performance measure and the closer it is to the actualperformance measure when rescheduling occurs. This describes the anytime nature ofthe AEB computation. Thus, in most situations, EB(s) � AEB(s) and the AEB(s) �ELB(s) by de�nition.Here we would like to add that all computations above are based on heuristics andhence are approximations including the OEB and EB. We could de�ne AEUB',OEB',EB',AEB' and ELB' which would involve complete analysis of all paths by the scheduler. Theresulting schedules would display higher performance characteristics and meet goal criteriabetter but will also be computationally infeasible to generate [Wagner98].5 Rescheduling and Recovery AlgorithmsIn this section, we describe a generic algorithm which can guarantee a more precise perfor-mance evaluation of schedules when uncertainty is present in the schedule, using the theorydescribed above. 11

Algorithm for building stable schedulesThe following is a formal description of the algorithm which chooses the schedule thatprovides the best performance guarantee statistically :1. Let sb = (m1; m2; m3; :mi; :mn) be the best schedule returned by the Design-to-Criteria scheduler for a given task structure.2. Suppose the scheduler evaluates k schedules to decide which is the best schedule,where sk = (mk1:::mkn) and let S be the set of all k schedules.3. sb has the highest ELB in S.4. Let Srem = S � sb. Then ELB(sb) � ELB(s) for all s 2 Srem .5. Let Sbrem be the set of s 2 Srem such that AEUB(s) � ELB(sb). If Sbrem 6= �, thenwe compute the AEB(s) for each s 2 SbremS sb.6. The new best schedule sbaeb is the one with with the highest AEB. sbaeb is guaranteedbe more robust.Identifying CTER'SThe AEB is a better estimate than the ELB when there is uncertainty in the schedule,i.e., there are CTER's in the schedule and there is a possibility for contingency plans.Earlier we de�ned CTER's as those regions in the schedule which could potentially lead todegradation in the expected performance. This could relate to any of the following factors:1. Signi�cant variance in the criteria distribution: For methods with a single outcome,we look for variance in the criteria distribution of the method from the expected valuesand evaluate if this variance will critically a�ect the performance of the schedule. Inour example, method A2 has the following quality distribution Quality :(25% 0)(75%3) which means there is a 25% chance of failure. This makes it a candidate CTER.2. Signi�cant likelihood of failure: For methods with multiple outcomes, we determine ifthe other outcomes which are not included in the schedule could detrimentally a�ectthe schedule's performance if they occurred. We also examine the distributions ofmethods whose performance could a�ect other methods as described by non-locale�ects, namely the enablers and facilitators in a task structure. In the example,method A2 not only has a failure possibility in its distribution, it also enables methodA3. Thus, it becomes imperative to evaluate A2 as a CTER.3. Reasonable deadline: The AEB calculation is useful when there is a rigid deadlineallowing enough time for contingency but not for redundancy. If cost is not an issueand the duration deadline for a task structure is elastic enough for scheduled(using theELB measure) redundant activities to overcome CTER's, then contingency analysismight not be required. However, we would like to point out that while the schedulewith highest ELB rating would execute the redundant method(s) regardless of thesuccess or failure of the CTER, the schedule with the highest AEB can dynamicallyadjust to the actual execution outcomes and hence execute the method(s) whichwill best improve performance with minimal redundancy and cost. This issue of12

redundancy is discussed in detail later on in the paper. In our example, the durationdeadline of 18 minutes allows for contingency but not for redundancy. Howeverwith a duration deadline of 30 minutes, the ELB computation produced the schedulefA1,A2,A3,Bg as there is enough time to reschedule B in case of failure of A2. TheAEB computation also chose the schedule fA2,A1,A3,Bg since both duration andcost are not constrained. Both schedules had the same performance statistically witha mean quality of 1.09 as expected.We have heuristics which allow us to perform cheap approximate analysis of the taskstructure and schedule to analyze the existence and e�ects of CTER's. This helps determinewhether contingency analysis is possible and worth the e�ort.Method reorderingEarlier, we noted that the AEB evaluation, unlike the ELB evaluation, views permutationsof the same set of methods as di�erent schedules. We saw that while one permutationA2,A1,A3 permitted a contingent schedule, the other A1,A2,A3 did not. We describebelow two types of method reordering within a schedule:Simple reordering: Consider a schedule s = fm1; m2; m3; ::mi; :::mng . Suppose mi isa CTER. Then if the AEB computation is unable to �nd a contingent schedule in case offailure of mi , we will automatically try to move mi ahead in the schedule without a�ectingany of the non-local e�ects such as enables or facilitates. So if mi can be moved ahead ofm3 without a�ecting any non-local e�ects, we get a new schedule s0 = fm1; m2; mi; m3; :::::gand we reevaluate the AEB rating. Our example uses simple reordering i.e. A2 can bemoved ahead of A1 and a contingent schedule can be obtained.Complex reordering: Consider the schedule s again but suppose mi�1 facilitates mi,which is a CTER. Also suppose we are unable to �nd a contingent schedule in case mi fails.Here, we would try to move method mi forward in the schedule, by ignoring the facilitatesand evaluate if the AEB rating of the new schedule justi�es the loss of the facilitates.Redundancy in the Design-to-Criteria scheduler:An interesting extension of the evaluation in our example is to look at schedules that areproduced to resolve uncertainty which in some cases instead of assuming success, assumesfailure.Suppose in the Information Gathering example the results of task B is a subset ofthe results of task A, if task A is executed successfully. In other words the search at theAdobe site will provide only redundant information, if the Benchin site has been successfullyqueried. Let us assume that the new criteria is to maximize quality, a soft duration deadlineof 18 minutes and a hard duration deadline of 25 minutes.The Design-to-Criteria scheduler would then present the schedule fA2,A1,A3,Bg as itwould have the highest ELB. So if A2 fails, execution of B would ensure that the high levelgoal is achieved. But the ELB computation doesn't assume rescheduling if A2 succeedswhich eliminates the need to execute method B. We know ELB(fA2; A1; A3; Bg) would13

never be better than ELB(fA2; A1; A3g) if A2 succeeded because method B is redundantand its only e�ect is to increase the duration of the schedule which decreases the ELBrating. In general, if the ELB criteria attaches any signi�cance to the duration of theschedule, then the removal of actions from the schedule due to the results of prior actionsmaking this action redundant will always increase the ELB rating.The AEB calculation for schedules that have built-in contingencies, both successful andfailure action evaluation has to be modi�ed. Normally, contingency analysis is done for thefailure region. In this case where the contingency schedule for failure is a subset of the exist-ing schedule, one needs to do contingency analysis for both success and failure possibilities.We extend the formula described in the de�nition of AEB. Letm1; m2:::mcrij ; k1; ::kp; l1; ::lq; mi+1::mnbe a schedule s of n methods with a critical region mcrij which occurs with frequency of fail-ure f cri . Let the recovery path available at critical region mcrij be l1; l2:::lq and suppose itsa subset of k1; k2::kp where k1; k2::kp produces quality only if mcrij succeeds and the qualityproduced by l1; l2:::lq is independent of the success of mcrij . The AEB of the entire scheduleis described recursively as AEB(s) = (1� f cr1) � AEB(m1; m2:::mcrij ; k1; ::kp; mi+1; ::mn) +(f cr1) � ELB(m1; m2::mcrij ; l1::lq; mi+1:::mn)So in schedule A2; A1; A3; B, the exact evaluation of the schedule would be one whichtakes both A2success and A2failure into consideration. If A2 is successful, then the methodsrelated to failure of A2 should be eliminated (method B in this case) while rating A2success.Likewise, if A2 fails, methods associated with the success of A2 namely A1,A3 shouldbe eliminated while rating A2failure. So AEB(A2; A1; A3; B) = ELB(A2successA1; A3) +ELB(A2failureB).6 Experimental ResultsUsing the measures described above, e�ective contingency planning is a complex process.It involves taking into account a number of factors namely task relationships, deadlines,availability of alternatives, user-directed quality, cost and duration criteria.As a part of the evaluation process, we will try to describe the characteristics of the ob-jective function as well as the characteristics of the task structures for which it would beadvantageous to do contingency planning. We will also explain why these characteristicsa�ect the performance.We performed the evaluation by randomly generating task structures with varied taskstructure characteristics and doing contingency analysis by varying the multi-attributedobjective function. We used our prior knowledge of the potential of the performance mea-sure to seed the search for the types of task structures which would bene�t from contingencyanalysis. Since method failure is a crucial factor for the contingency analysis argument,we have focused our attention on two factors namely, the e�ects of failure location andfailure intensity(probability of failure). We used 10 randomly generated task structureswith speci�c characteristics and speci�c objective functions. Figure 5 shows three suchrandomly generated task structures used in the evaluation.The results from the performance evaluation are shown in Figure 6. For each taskstructure. 30 simulated executions were performed using the schedule with the highestELB and similarly for the schedule with highest AEB. The schedule qualities achieved14

M4

M1 M2

min()
sum()

M3

S

T3

C (100% 1.0)

T2

T1

min()

Task

Method

Enables

max()

M6M5

D ((50% 10.0)

Q ((80% 10.0)

C (100% 1.0)
 (20% 150))

D ((20% 10.0)

Q ((50% 120.0)
 (50% 100))

C (100% 1.0)
D (100% 5.0)

Q ((20% 60.0)
 (80% 70))
C (100% 1.0)
D (100% 2.0)

 (80% 15.0)) (50% 15))

Q ((35% 140.0) Q ((45% 0.0)
 (55% 160))
C (100% 1.0)
D (100% 1.0)D (100% 10.0)

 (65% 120))
Q ((5% 0.0)
 (95% 150))

C (100% 1.0)

M6 M2

Q ((95% 20.0)(5% 10.0))

M6

max()

D ((50% 10.0)(50% 15.0))

min()

max()

max()

min()

M4

M5

T1

T2

T3

T4

T5

Q ((50% 10.0)(50% 20))
C (100% 1.0)
D ((50% 10.0)(50% 5.0))

Q ((95% 10.0)(5% 0.0))
C (100% 1.0)
D (100% 5.0)

Q ((25% 20.0) (65% 80) (10% 0.0))
C (100% 1.0)
D ((20% 15.0)(80% 10.0))

M3

Q ((5% 30.0)(95% 15.0))
C (100% 1.0)
D ((50% 10.0)(50% 15.0))

D ((50% 10.0)(50% 5.0))
C (100% 1.0)

Q ((5% 40.0)(95% 50.0))
C (100% 1.0)

T1

Q ((50% 120.0)
 (50% 100))

Q ((15% 95.0)
 (85% 90))min()

T2

T3 T4

M1

D (100% 5.0)

M2 M3

M6 M7M5

S

M4

min()

max()
max()

min()

Q ((15% 0.0)(85% 110))
C (100% 1.0)
D ((50% 10.0) (50% 15.0))

Q ((80% 120.0)
 (20% 10))

D ((50% 10.0)(50% 5.0))
C (100% 1.0)

 (50% 15.0))
D ((50% 10.0)
C (100% 1.0)

Q ((20% 0.0) (80% 150)) Q ((75% 40.0) (25% 160))
C (100% 1.0)
D ((50% 15.0) (50% 10.0))

C (100% 1.0)
Q ((10% 120.0)
 (90% 100))

C (100% 1.0)
D (50% 10.0)(50% 5.0)

D ((50% 10.0) (50% 15.0))

C (100% 1.0)Figure 5:were then normalized by the highest execution quality achieved in the 60 executions andthe average quality from non-contingency(ELB-based) schedule executions and quality fromcontingency(AEB-based) schedule executions were recorded. The above steps were repeatedfor each of the 10 task structures and then we �nally averaged the non-contingency exe-cution quality averages and contingency execution quality averages represented by Ave.Quality Non.Cont.Schldg and Ave.Quality Cont.Schldg respectively.Failure Ave. Quality Ave. Quality PerformanceLocation Intensity Non.Cont. Schdlg Cont. Schdlg ImprovementEarly Medium 0.70971 0.80198 11.5%Medium Medium 0.76280 0.82939 8.02%Late Medium 0.61334 0.72694 15.63%Medium Low 0.80845 0.84331 4.13%Medium Medium 0.66559 0.75785 12.17%Medium High 0.59802 0.65194 8.27%Figure 6: The �rst 2 columns show the variables being tweaked namely Failure Locationand Failure Intensity. The third and fourth column show the normalized execution qualitywithout contingency planning and with contingency planning averaged over 300 simulatedexecutions. The last column shows the performance improvement achieved by contingencyanalysis.Failure Location refers to the position of critical method(s) in a task structure andhence in the schedule. We have classi�ed Failure locations into 3 namely, Early, Mediumand Late failure. Similarly, Failure Intensity refers to the probability of a method failingand we have classi�ed it to be Low, Medium and High where 1-10is Medium and 41The �rst three rows show the performance of schedules with varying the Failure Locationfactor. The Failure Intensity was kept constant at Medium and the objective function wasfocussed on maximizing quality while trying to keep schedule duration to a minimum. Nohard duration deadlines or quality thresholds were speci�ed.Firstly, we note that contingency planning gives a signi�cant improvement in performancein all three cases. We see that when failure is early in the schedule, both non-contingency15

and contingency perform relatively well. This is because the non-contingency case can insertredundant methods in the schedules to handle failures. The contingency case performsbetter because it plans ahead for the failures and no time or quality is lost in performingredundant methods. When failure is in the middle regions, performance is scaled up. Thenon-contingency case applies its redundancy heuristic to cover for method failures and thecontingency case executes schedules which have good average performance with and withoutfailures. When failure is late in the schedule, performance degrades in both cases. The non-availability of viable alternatives late in the schedule execution is the reason for this. Thenon-contingency case was often found to take a lower quality yet safer(minimal failure)route in most of the runs. Contingency planning however tries to �nd contingent planswhich would be a safe path but this was not always a possibility. This explains the dropin performance from the Medium Location case but the signi�cantly better performancecompared to non-contingency scheduling in similar settings.The last three rows show the performance of schedules with varying the Failure Intensityfactor. The Failure Location was kept constant at Medium level and again the objectivefunction were focussed on maximizing quality while trying to keep schedule duration to aminimum. No hard duration deadlines or quality thresholds were speci�ed.Once again, we note that contingency planning gives a signi�cant improvement in perfor-mance in all three cases. We see that when Failure Intensity is low, both non-contingencyand contingency perform very well.In fact this is the best case for all the 6 cases. Also thereis not a big di�erence in performance between the two cases, there is only a 4% increasein performance. This is because failure occurs at a vary low rate and hence contingencyplanning is really not necessary. When Failure Intensity is medium, contingency regainsits advantageous position by being able to handle both the success and failure of criticalmethods. When Failure Intensity is very high, performance is at its worst relative to theother cases and this is because all paths are riddled with highly critical points nad theprobability of the plan completely failing for all possible plans is pretty high. Even inthis case we see that contingency performs better than the non-contingency case becauseif there is a path, namely by rearranging methods and trading o� nle's, which can achievequality, contingency planning would �nd it while the non-contingency analysis will not.We now describe the characteristics of task structures which make it advantageous toperform contingency planning.1. Methods in task structures should have possibility of failure in their distribution.2. There could be multiple methods which could fail in a single task structure.3. Task structures should contain alternate paths with signi�cant di�erence in perfor-mance. For instance when one path has high quality and also high risk of failure andanother path is low quality but has no failure, it would be useful to do contingencyanalysis.4. A possibility of moving failure methods forward(absence of associated hard nle's)would further the potential of contingency analysis.5. Presence of an alternate path with low quality, low cost, low duration and low uncer-tainty. 16

6. Dependence of methods with good average performance on critical methods.(enablesnle from a critical method to a non-critical method.)The following characteristics of objective function which augment contingency planning.1. The objective function could specify a hard deadline, and emphasis should be givento either the quality or duration slider.2. The deadline should also provide enough time for contingency analysis.3. Giving relatively equal importance to the quality goodness and duration sliders andmaxing the meta goodness slider.4. Setting relatively equal importance to the meta goodness and meta duration slidersif a deadline is speci�ed.7 Conclusions and Future WorkThis paper has presented an algorithm to improve the performance of a schedule. Using theschedules emitted by the Design-to-Criteria scheduler and statistical measures of scheduleevaluations, the algorithm builds contingent schedules to improve overall robustness. Wealso described the characteristics of the task structures and objective functions for whichcontingency analysis is advantageous.We still use approximations and statistical measures of schedule criteria values andhence cannot guarantee 100% reliable schedules for all problems within our domain. Thetradeo� between robust schedules and criteria constraints is not the same for all users orfor all problems within a domain. And so our approach is a step towards guaranteeingrobustness where there are some resources set apart for this contingency analysis.In our domain, we have considered only static critical task execution regions i.e. theidenti�cation of critical task execution regions is independent of the progressive results ofschedule execution. Hence we do not incrementally look at the envelopes [Amant 95].Further analysis of each of these categories of critical task execution regions includingtheir identi�cation and handling as well the concept of dynamic critical task executionregions will prove to be interesting areas for future research.We plan to build a front end to this system which will classify task structures andtheir objective functions to viable and non-viable structures for contingency analysis. Thiswould improve the cost the performance ratio of scheduling and executing plans.We also plan to determine the relationship between number of reschedulings occuringin a single execution and how well the schedules with best ELB and best AEB ratingsapproximate the actual execution performance. In other words we would like to comparethe plan that is actually executed to the plan that was suggested by the contingencyplanning.We also plan to compare the performance of tree based ELB computation versus theunderestimate ELB computation which uses approximation heuristics.We would like to inferthe degree of task structure complexity which makes it uses to perform tree based ELBcomputation which is very accurate versus using the non-tree case which is less accuratebut suitable for handling the combinatorics of a typical real world scheduling problem.17

References[Amant95] St. Amant, R.; Kuwata, Y.; and Cohen, P. 1995. \Monitoring Progress withDynamic Programming Envelopes." In Proceedings of the Seventh International IEEEConference on Tools with Arti�cial Intelligence, IEEE Computer Society Press, pp. 426-433.[Boutilier95] Boutilier, C.;Dean, T.; and Hanks, S. Planning Under Uncertainty: Struc-tural Assumptions and Computational Leverage In Proceedingsof Proc. 3rd EuropeanWorkshop on Planning (EWSP'95).[Bresina94] Bresina, J.;Drummond, M; Swanson, K., \Just-In-Case Scheduling", Proceed-ings of AAAI-94, Seattle, WA[Dean95] Dean, T.;Kaebling, L; Kirman, J.; Nicolson, A, \Planning under time constraintsin stochastic domains", Proceedings of AI-95.[Decker95] Decker,K.; TAEMS: A framework for analysis and design of coordination mech-anisms. In G. O'Hare and N. Jennings, editors, Foundations of Distributed Arti�cialIntelligence. Wiley Inter-Science, 1995.[Decker93] Decker, K.; and Lesser, V. \Quantitative Modeling of Complex ComputationalTask Environments", Proceedings of the Eleventh National Conference on Arti�cial In-telligence, 1993.[Draper94] Draper, D.; Hanks, S.; and Weld, D., \Probabilistic Planning with Informa-tion Gathering and Contingent Execution" In Proceedings of the Second InternationalConference on Arti�cial Intelligence Planning Systems (AIPS-94) pages 31-36.[Haddaway98] Haddaway, P.; Hanks, S. 1998. \Utility models for goal-directed decision-theoretic planners" Computer Intelligence, Volume 14, Number 3, 1998.[Hart90] Hart, D.; Anderson, S.; and Cohen P., 1990. \Envelopes as a Vehicle for Im-proving the E�ciency of Plan Execution" In Proceedings of the Workshop on InnovativeApproaches to Planning, Scheduling and Control. K. Sycara(Ed.). Morgan Kaufmann.71-76.[Kushmerick94] Kushmerick, N.; Hanks, S.; and Weld, D. \An Algorithm for ProbabilisticPlanning" 1994. In Proceedings of Arti�cial Intelligence,1994 (Short Version AAAI-94).[Onder97] Onder, N.; Pollack, M. \Contingency Selection in Plan Generation" 1997. InProceedings of the Fourth European Conference on Planning (ECP'97)[Peot92] Peot, M.; Smith, D. \Conditional nonlinear planning" 1997. In Proceedings ofFirst International Conference on AI Planning Systems pages 189-197, 1992.[Wagner98] Wagner, T.; Garvey, A.; and Lesser, V. 1998. Criteria-Directed HeuristicTask Scheduling. International Journal of Approximate Reasoning, Special Issue onScheduling. To appear. Also available as UMASS CS TR-97-59.18

[Wagner97a] Wagner, T.; Garvey, A.; and Lesser, V. 1997. Complex Goal Criteria and ItsApplication in Design-to-Criteria Scheduling. In Proceedings of the Fourteenth NationalConference on Arti�cial Intelligence, 294{301. Also available as UMASS CS TR-1997-10.[Wagner97b] Wagner, T.; Garvey, A.; and Lesser, V. 1997. Leveraging Uncertainty inDesign-to-Criteria Scheduling. UMASS Department of Computer Science Technical Re-port TR-97-11.[Williamson94] Williamson, M., and Hanks, S., 1994 \Optimal Planning with a Goal-Directed Utility Model" In Proceedings of the Second International Conference on Arti-�cial Intelligence Planning Systems (AIPS-94) pages 176-181.

19

