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Abstract
This paper describes the rationale, architecture, and preliminary implementation of a next generation information

gathering system. The goal of this funded research is to exploit the vast amount of information sources available today
on the NII including a growing number of digital libraries, independent news agencies, government agencies, as well
as human experts providing a variety of services. The large number of information sources and their different levels
of accessibility, reliability and associated costs present a complex information gathering coordination problem. We
outline the structure and components of a next generation information gathering agent that plans to gather information
to support a decision process, reasons about the resource trade-offs of different possible gathering approaches, extracts
information from unstructured documents, and uses the extracted information to refine its search and processing
activities.

1 Introduction
The vast amount of information available today on the NII (WWW) has great potential to improve the quality of
decisions and the productivity of consumers of this information. Currently available information sources include
a growing number of digital libraries, independent news agencies, government agencies, as well as human experts
providing a variety of services. A rapid expansion of these services is expected over the next 5-10 years. In addition, we
anticipate that improved information retrieval (IR) and information extraction (IE) technologies will become available
[2, 14, 11] and that structured data will become commonplace on the WWW. These advances will allow a system not
only to locate, but also to extract and use, networked information.

The large number of information sources that are currently emerging and their different levels of accessibility,
reliability and associated costs present a complex information gathering planning problem that a human decision
maker cannot possibly solve without high-level filtering of information. For many information gathering tasks, manual
navigation and browsing through even a significant portion of the relevant information is no longer effective. The
time/quality/cost tradeoffs offered by the collection of information sources and the dynamic nature of the environment
lead us to conclude that the user cannot (and should not) serve as the detailed controller of the information gathering
process.

The solution outlined in this paper is based on the observation that a significant portion of human information
gathering is an intermediate step in a decision making process. For example, a user preparing to buy a new car may
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search the Web for data to assist in the decision process, e.g., crash test results, dealer invoice prices, reviews and reli-
ability statistics. To address the requirements of this application, and to address the attributes of the environment, the
information gathering agent must plan to gather information, reason about the time/quality/cost trade-offs of different
possible gathering actions, gather information, extract relevant features from structured and unstructured documents,
and use the extracted information to further drive and refine its search activities. The final result of the information
gathering search process is a decision or a suggestion accompanied by the extracted information and raw supporting
documents.

To illustrate, consider a simple example in which an individual is deciding whether to purchase the new Toyota
Camry or the Nissan Maxima. To support this decision the individual must gather information pertaining to all the
major decision criteria, e.g., price, acceleration, safety, and compare/contrast the models using the bullets extracted
from the gathered information. Thus the client must first locate good information sources, if none are known a priori,
and then go to the sites and browse/query his/her way to the relevant data. Our system automates this process. Figure 1
shows a simplified task structure for comparing two different automobiles according to a given client’s criteria. The
task structure is encoded in the TÆMS [8] domain independent task modeling language (the details of which are
beyond the scope of this paper). The task structure describes a hierarchical plan for gathering information to support
the auto purchase decision. The lowest level leaves are executable actions and different combinations of actions can
be used to achieve the higher level task . A task structure such as this is produced by the planning component of
our agent and another component, the agent scheduler, reasons about the different trade-offs of different possible
courses of action. For different clients and different time/cost/quality constraints, different courses of action may
be appropriate. Figure 2 shows four different schedules constructed for four different clients with different resource
constraints. Schedule A is constructed for a client interested in a fast, free, solution with any non-zero quality. Schedule
B suits a conservative client who is interested primarily in certainty about quality achievement. Schedule C is designed
for a client who wants high quality information, is willing to wait a long time for an answer, and is only willing to
spend $5 on the search. Schedule D is meets the criteria of a client who wants the highest possible quality, is willing
to spend $10, and wants the gathered data in 15 minutes or less. We should note that the schedules present actions in a
sequential fashion for for simplicity only – the system exploits parallelism where possible, i.e., where not precluded by
constraints such as hard task interactions (e.g., hard precedence relationships) or resource limitations, such as limited
bandwidth or local processing. The ability to effectively exploit parallelism is one of the immediate gains of our
automated controller over a human controller.

Q = Quality
C = Cost
D = Duration
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Figure 1: TÆMS Task Structure for Gathering Auto Purchase Information

The combinations of actions that can be used to achieve a task are governed by the quality-accumulation-functions associated with the tasks.
For example, a min() function is analogous to a logical AND.

The task structure is conceptually the output of the planning component as there are also tasks that relate to system internals and performing
non-Web activities.
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Schedule C: Good Quality, Moderate Cost, Slow
Edmund's-Reviews Heraud's-Test-Drives Intelichoice
Q (~0% 17)(20% 27)(2% 34)(78% 44)
C (100% $4.95)
D (20% 840)(19% 900)(31% 920)(19% 980)(11% 1000)
Expected Q: 40 Q Certainty: 78%
Expected C: $4.95 C Certainty: 100%
Expected D: 920 seconds D Certainty: 70%

Get-AutoSite-URL Issue-AutoSite-RequestHeraud's-Test-DrivesEdmund's-Reviews
Schedule D: High Quality, High Cost, Moderate Duration

Q (1% 0)(4% 27)(19% 34)(2% 41)(74% 51)
C (100% $9.95)
D (20% 630)(31% 690)(24% 720)(19% 740)(6% 760)
Expected Q: 46 Q Certainty: 74%
Expected C: $9.95 C Certainty: 100%
Expected D: 698 seconds D Certainty: 51%

Q (~0% 0)(5% 10)(2% 12)(93% 22)
C (100% 0)
D (25% 240)(25% 250)(31% 260)(12% 270)(6% 280)
Expected Q: 21 Q Certainty: 93%
Expected C: 0 C Certainty: 100%
Expected D: 255 seconds D Certainty: 50%

Schedule A: Fast and Free
Edmund's-Reviews Edmund's-Price-Guide

Q (2% 17)(98% 27)
C (100% $4.95)
D (25% 600)(12% 620)(31% 680)(19% 700)
Expected Q: 26 Q Certainty: 98%
Expected C: $4.95 C Certainty: 100%
Expected D: 647 seconds D Certainty: 50%

Schedule B: High Quality Certainty, Moderate Cost
Edmund's-Reviews Intelichoice

Figure 2: Four Satisficing Schedules

The cornerstone of our work is that retrieving relevant documents is not a viable end solution to the information
explosion. The next generation of information systems must use the information to make decisions and thus provide
a higher-level client interface to the enormous volume of on-line information. Our work is related to other agent
approaches [20] that process and use gathered information, such as the WARREN [6] portfolio management system
or the original BargainFider [13] agent or Shopbot [10], both of which work to find the best available price for a music
CD. However, our research differs in its direct representation of, and reasoning about, the time/quality/cost trade-offs
of alternative ways to gather information, its ambitious use of gathered information to drive further gathering activities,
its bottom-up and top-down directed processing, and its explicit representation of sources-of-uncertainty associated
with both inferred and extracted information.

From the perspective of a digital library, our research is aimed at partially automating the function of a sophisticated
research librarian. This type of librarian is often not only knowledgeable in library science but also may have a
technical background relevant to the interests of the research domain. In addition to locating relevant documents for
their clients, such librarians often distill the desired information from the gathered documents for their clients. They
often need to make decisions based on resource concerns such as the trade-offs between billable hours and solution
quality and the resource time/quality/cost constraints specified by a given client; or whether certain periodicals are
available in-house, and if not, how long it will take to get them and what they will cost. We see the partial automation
of a sophisticated librarian as a natural step in the evolutionary development of a fully automated digital library.

The complexity of our objective mandates a high level of sophistication in the design of our information gathering
agent’s components. Indeed, several are complex problem solvers in their own right. A domain problem solver, a
RESUN [4, 3] planner, translates a client’s information need into a set of goals and generates plans to achieve those
goals. To support reasoning about time/quality/cost trade-offs, and thus a range of different resource/solution paths,
the planner enumerates multiple different ways to go about achieving the goals and describes them statistically in three
dimensions, duration, quality, and cost, via discrete probability distributions. Another sophisticated problem solving
component, a Design-to-Criteria [17, 19, 18] scheduler, examines the possible solutions paths and determines a set of
actions to carry out and schedules the actions – coping with an exponential scheduling problem in real-time through
the use of approximation and goal directed focusing. When documents are retrieved, yet another sophisticated problem
solver, an IE system [11], breaks the unstructured text documents down into information templates that can be used
by the planner for decision making and refinement of other information gathering goals. Other complex components
include a framework for modeling domain tasks, a Web site information database, an idle-time Web site probe for
refining the database, and a task assessor to assist in translating the problem solver’s domain plans into a domain
independent representation appropriate for use by the Design-to-Criteria scheduler and other high-level components.
Other aspects of our work also include a high-level decision-theoretic controller to provide the information gathering
goals and a multi-agent coordination module to facilitate scaling and a means for bringing the information need to the
data rather than vice-versa. We will return to the agent architecture in greater detail in Section 3.
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2 Information Gathering as an Interpretation Task
In several senses, WWW-based information gathering to support a decision process is conceptually akin to a sensor
interpretation (SI) problem. In sensor interpretation tasks, the objective is to construct high-level representations from
low-level sensor data in order to explain the origin of the sensor data. In the IG domain, the Web can be viewed
as a signal representing the simultaneous broadcast of information by abstract (e.g. legal case brief) or concrete (e.g.
computer hardware) entities via Web documents, and the task of an IG agent is to sample the Web at appropriate points
and construct high-level models of the entities it requires, with sufficient detail for making a decision.

The signals in both the SI and IG domains share the feature that any given sample can contain simultaneous
contributions from multiple signal-generators. Examples of this issue in the SI domain include simultaneous sounds
and occluding sonar targets, while examples of this issue in the IG domain include documents that review several
software packages, or image files that contain more than one automobile chassis.

The SI problem includes the data assignment problem [1], which refers to the issue of determining not only what
types of signal-generators are in the environment, but also how many instances of these generators are present. This
problem also occurs in the IG domain in that at any given time, there are an arbitrary number of entities of any single
type which are generating a portion of the Web. For example, one may say that some portion of the Web contains
information related to the generic Automobile entity type, or to the generic Word Processor entity type, but there is no
a priori limit to the number of instances of each type that could be found on the Web and that might be relevant to a
given decision.

In addition to similarities in the inherent features of the “signals” in both domains, there are similarities in the
uncertainty issues of both IG and SI extraction methods. Samples from the Web or a digital signal and immediate data
representations inferred from them may be incomplete (e.g. digital signal is undersampled, or requested documents
are unavailable) or inconsistent (e.g. mathematical signal representations obtained at nearby points in a signal may not
match, or different documents may give different prices for the same product from the same vendor). Thus even at the
raw data level uncertainty about the quality of the information itself is present.

Concentrating our discussion on the IG task, we can see that this uncertainty is compounded as problem-solving
proceeds, as the IE techniques used to extract relevant features from unstructured documents are error prone. Since
these features will further drive and refine agent activities, the uncertainty is propagated to the agent’s subsequent
actions and the information gathered in response to these actions. For a concrete example, consider the situation
in which a retrieved review contains information on several related products, and the IE system extracts a “required
RAM” feature from the document and associates it with a given product. There is the possibility that the feature has
been associated with the wrong product. For such situations, an IG agent should be able to decide dynamically to
search the Web for documents whose content might be more focused on the product under scrutiny, in order to resolve
the uncertainty. In interpretation problems in general, planning to resolve sources of uncertainty about a given piece
of information is crucial in building reasonable confidence levels in the derived information objects.

In casting IG as an interpretation problem, we face a search problem characterized by a generally combinatori-
ally explosive state space. Our agent-based solution addresses three issues associated with this problem. The first is
resource-bounds. In the IG task, as in other interpretation problems, it is impossible to perform an exhaustive “sig-
nal” (e.g. Web) search to gather information on a particular subject. This issue will require a goal directed, resource
bounded approach. The second issue is data distribution. In interpretation problems, often the sensors report data
for physically disparate regions and the high-bandwidth of collected data preclude a monolithic dataprocessing so-
lution. This is also true in the exponentially growing WWW – while we have started with a single agent approach
to information gathering, it is clear that multiple-agent systems will be required in the near future. Wrapping infor-
mation providers in agent shells and transportable query agents will be required to limit the amount of data passed
over the network and to cope with the large volumes of distributed data. The third issue is interleaved data-driven
and expectation-driven processing. Processing in an interpretation problem must be driven by expectations of what is
reasonable, but, expectations in turn must be influenced by what is found in the data. For example, during a search to
find information on word processors for Windows95 , with the goal of recommending some package to purchase,
an agent finding “Excel” in a review article that also contains “Word 5.0” might conclude based on expectations that
“Excel” is a competitor word processor. However, subsequent gathering for “Excel” would associate “Excel” with
spreadsheet features and would thus change the expectations about “Excel” (and drop it from the search when enough
of the uncertainty is resolved).
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Figure 3: Information Gathering Agent Architecture

3 Agent Architecture and Supporting Technologies
The overall information gathering agent architecture is shown in Figure 3. The agent is comprised of several sophisti-
cated components that are complex problem problem-solvers and research subjects in their own rights. The integration
of such complex components is another benefit of our research agenda. By combining components in a single agent,
that have hereto been used individually, we gain new insight and discover new research directions for the components.
The most important components, or component groups are:

Modeling Framework The TÆMS [8] task modeling language is used to hierarchically model the information gath-
ering process and enumerate alternative ways to accomplish the high-level gathering goals. The task structures
probabilistically describe the quality, cost, and duration characteristics of each primitive action and specify both
the existence and degree of any interactions between tasks and primitive methods. For instance, if the task of
Find-Competitors-for-WordPerfect overlaps with the task of Find-Competitors-for-MS-Word (particular bind-
ings of the general Find-Competitors-for-Software-Product task) then the relationship is described via a mutual
facilitation and a degree of the facilitation specified via quality, cost, and duration probability distributions.
TÆMS task structures are stored in a common repository and they serve as a domain independent medium of
exchange for the rest of the system.

RESUN Planner The RESUN [4, 3] (pronounced “reason”) blackboard based planner/problem solver directs infor-
mation gathering activities. The planner receives an initial information gathering goal specification from an
external decision maker, which can be a human or another sophisticated automated component, and then for-
mulates a partial plan for gathering the necessary information. The plan delineates alternative ways to go about
gathering the information and characterizes the different possibilities statistically in three dimensions quality,
cost, and duration, via discrete probability distributions. The strength of the RESUN planner is that it identifies,
tracks, and plans to resolve sources of uncertainty (SOUs) associated with blackboard objects, which in this
case correspond to gathered information and hypothesis about the information. We will return to the topic of the
planner in Section 4.1.

Task Assessor The task assessor uses meta-knowledge about the RESUN component’s problem solving behavior and
the state of the problem solving process to build task representations from RESUN’s inherently opportunistic
approach to problem solving.

Design-to-Criteria Scheduler Design-to-Criteria is a domain independent real-time, flexible computation [12, 5, 15]
approach to task scheduling. The Design-to-Criteria task scheduler reasons about quality, cost, duration and
uncertainty trade-offs of different courses of action and constructs custom satisficing schedules for achieving
the high-level goal(s). The scheduling task is exponential and the scheduler copes with the computational com-
plexity through the use of approximation and by satisficingly directing all of its activities to produce solutions
and partial solutions that meet a dynamic set of goal criteria, e.g., real-time constraints, specified by the problem
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solver and the client/user. The Design-to-Criteria scheduler is what gives the IG agent the ability to reason
about time/quality/cost trade-offs of alternative (potentially parallel) actions and the ability to meet deadlines,
stay within cost ranges, and meet quality and certainty requirements.

Information Extraction The system uses IE [11] technology to extract particular desired data from retrieved unstruc-
tured text documents. The extraction component uses a combination of learned domain-specific extraction rules,
domain knowledge, and knowledge of sentence construction to identify and extract the desired information. The
extracted data is used to direct and refine search activities and to provide evidence to support decision making.
For example, in the software product domain, extracting a list of features and associating them with a product
and a manufacturer is critical for determining whether the product in question will work in the user’s computing
environment, e.g., RAM limitations, CPU speed, OS platform, etc. We will return to the IE system in greater
detail in Section 4.3.

Web Retrieval Interface The Retriever tool functions as the lowest level interface between the problem solving el-
ements and the system’s primary source of information, the Internet. It provides server characteristics and
response measures, both the plain-text and HTML formatted document content, and a listing of the active URLs
present within that content. Through variable remapping, it can also provide a generic, consistent interface to
interactive Web-based services, allowing the problem solver to pose queries without knowledge of the specific
server’s syntax.

Server Information Database The server database contains numerous records identifying both primary and sec-
ondary information sources on the Internet. Within each record are stored the pertinent characteristics of a
particular source, which consist of such things as its quality measures, retrieval time and cost, and relevant
keywords, among others. This information can be used to both discover new sources, as well as characterize
those which have already been found but not yet processed. Database searches are optimized through the use
of both field content indices and an overall database map. As a characterization tool, the database is also able
to consolidate related records in order to obtain an approximate representation of sources which have yet to be
retrieved. The information within the database is currently gathered offline by an independent process, although
we plan to augment the core system with this functionality to perform more focused updates both during and
after active IG sessions.

Multi-Agent Coordination Module This component is not part of the single-agent information gathering system
architecture. However, it is necessary for the multi-agent system currently planed for our next research stage.
We have done extensive work in multi-agent coordination [7, 9] and the coordination research tools will be
integrated into the system via the TÆMS domain independent framework much along the same lines as the
Design-to-Criteria Scheduler.

Currently, all of these components are implemented and undergoing testing. However, we have not yet fully
integrated the RESUN planner and the Design-to-Criteria task scheduler at this time. In terms of functionality, this
means that while the agent plans to gather information, gathers the information, uses the IE technology to break down
the unstructured text, and then replans, it does not reason about the trade-offs of different possible courses of action
and does not plan for real-time or cost limits and does not meta-reason about its actions in any way. Control is entirely
opportunistic as driven by the blackboard control scheme. Integrating the planner and scheduler are the next step in our
development process. In the following section we discuss our preliminary implementation and the planner in greater
detail.

4 Preliminary Implementation
Conceptually, the planner and Design-to-Criteria scheduler provide the IG agent with two types of problem solving.
The scheduler is dedicated to weighing resource costs of competing planner strategies with regard to long-term time-
frames and task interactions, and specifying orderings and deadlines for each general task the planner must achieve
(e.g. retrieving Web documents, finding new features for software products already partially modeled). The planner’s
role is to plan, within each scheduled task, the execution of agent components to achieve the task, and to opportunisti-
cally handle any unexpected uncertainties or serendipitous feature extractions that may occur. In this section we focus
on the planner and the components it manages in our agent.
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4.1 The RESUN Planner
From the description of desired IG agent behavior in searching the Web, one should be struck by the important role
the concept of uncertainty plays in controlling the application of problem-solving components to the interpretation
problem. We argue that it is useful to design an IG agent with the ability to represent uncertainty as symbolic, explicit
factors that can influence the confidence levels it maintains for hypotheses. Such sources of uncertainty (SOUs)
provide the cues for an opportunistic control mechanism to use in making context-sensitive decisions, for example,
to adaptively modify its search when a reference to a previously unknown product is encountered or to engage in
differential diagnosis to discriminate between two software products’ competitive features.

For this reason, our system uses Carver’s RESUN [4, 3] planner framework to control execution. This framework
views interpretation as a process of gathering evidence to resolve hypotheses’ SOUs. It incorporates a rich language
for representing SOUs as entities which trigger the selection of appropriate interpretation strategies. For some idea
of this representation’s scope, consider the following partial list of SOUs in the language. There is an SOU called
Partial-Support, which, when found on a blackboard hypothesis, represents the situation that the hypothesis has uncer-
tainty because support evidence has not yet been sought for it (e.g. a product’s price has not been searched for yet in
some document). Another SOU called Possible-Alternative-Explanation represents the situation that a hypothesis is
uncertain because there exist other explanations for it that have not yet been considered. A third SOU called Support-
Exclusion represents the uncertainty that a hypothesis has because some subset of the support evidence desired for it
has not been found because it is highly likely that the evidence in fact does not exist.

In addition to its SOU language, the RESUN planning framework provides an elaborate language for specifying
and executing the plans available to a system for satisfying the goals it generates as it solves an interpretation problem.
The following brief description of the control-plan framework concentrates on the RESUN features that are relevant
to IPUS; interested readers can find more detailed treatments in the planning community’s literature [4, 3] Problem-
solving under RESUN is driven by information in a problem solving model, which is a data structure that maintains a
list of the current highlevel blackboard interpretation hypotheses and the SOUs associated with each one’s supporting
hypotheses. SOUs from the problem solving model are selected by the planner to be resolved. That is, with selection
of an SOU, the RESUN planner establishes a goal that the SOU be eliminated or reduced, if possible.

It is the task of the RESUN planner to opportunistically execute the other major components of the IG agent in
response to critical types of SOUs, within the time constraints of the schedule proposed by the Design-to-Criteria
scheduler. In the next subsections we discuss the design and operation of these components, and conclude the section
with a sample trace of the agent’s execution, to illustrate the capabilities of the current implementation.

4.2 Blackboard Component
The Blackboard functions as a multileveled database for the information the planner system has discovered and pro-
duced thus far. Our current blackboard organization has four levels: User-Goal, Decision, Object, and Document,
in order of decreasing granularity. The layered hierarchy allows for explicit modeling of concurrent top-down and
bottom-up processing, while maintaining a clear evidential path for supporting and contradictory information. The
information at a given level is thus derived from the level(s) below it, and it in turn supports the hypotheses at higher
levels. For example, when evaluating a particular decision hypothesis’ appropriateness, the system would examine
the reliability of the text extraction processes used to generate the properties of the object upon which the decision
will be performed (e.g. BUY, RENT, TRADE-IN), each of which are in turn supported by various documents which
have been retrieved. An additional level, for an object’s features, is also soon to be added, which will facilitate data
association and co-referencing problems.

4.3 The Information Extraction Component
A key feature of our system is the use of newly extracted or learned information to further drive and refine the search
process. In this section we describe the text extraction component that is responsible for extracting information from
unstructured text. However, it is important to note that we believe structured information will become widely available
on the WWW in the future, obviating or at least decreasing the need for such tools during the IG process.

The extraction component consists of two discrete parts, a front-end information extraction system and a back-end
analyzer that processes the output of the information extraction for use by the rest of the system. The front-end IE
system analyzes unrestricted natural language and produces a representation of the information from the text which is
relevant to the domain. That is, it fills in a template where the information need is described by the template.

7



The IE system [16, 11] automatically creates a dictionary of extraction rules offline, that is sufficient to identify
relevant information from the training corpus. These rules are generalized as far as possible without producing errors,
so that the minimum number of dictionary entries covers the positive instances. For the software-product domain, our
training corpus consists of 150 software review documents which have been annotated manually by a domain expert.

The system accepts as input a retrieved document that is expected to be either a product review or a comparative
review of two or more products (a document classification step prior to information extraction is necessary). It then
extracts information belonging to all or any of the following categories: product identifier, company identifier, price,
platform, diskspace, RAM and multimedia requirements.

Our main contribution in this area is how the extracted information is made useful to the rest of the system by
means of back-end processing. The back-end takes the extractions made by the system and provides the degree of
belief for each extraction. The degree of belief indicates the level of confidence that the extraction is accurate and is
a function of the number of positive and negative training examples covered by all the rules that support a particular
extraction. Using the degree of beliefs as thresholds, we determine which of the extractions are valid and also compute
the certainty measure of the entire template. The processed information then supports opportunistic control in the
sense that newly discovered information can lead to the examination of a completely different part of the solution
space than before, e.g., searching for previously unknown competitors.

Currently, the aggregate text extraction component can successfully identify the above mentioned categories in
a given document and can provide the degree of belief in the extraction which indicates the level of confidence that
the extraction is accurate. To the extent that we have tested the system, the extraction dictionary works well for Cnet
reviews and with adequate training can be extended to documents from other sources. There are some limitations in
the IE technology; this a current ongoing research effort in its own right. The technology is imperfect and does not
handle proximity information well, i.e., references that span multiple clauses or sentences.

4.4 Execution Trace
To get a feel for the preliminary system in action, consider a high-level partial execution trace. Problem solving
begins when a client’s decision-oriented query arrives at the system – the objective is to suggest a wordprocessor for
Windows for a pentium-based PC with 16 megabytes of ram and 20 megabytes of available disk space (in the final
system, the agent will plan to meet time and cost constraints as well; as opposed to this implementation where the
agent simply stops processing after a specified interval). Upon receipt of the client query the system instantiates a
User-Goal hypothesis with the constraints derived from the submitted query. The planning system as a whole is driven
by the sources of uncertainty (SOU) which are associated with individual hypotheses on the blackboard. These sources
of uncertainty serve as flags which as a group indicate what sort of action needs to be taken for the problem solving
process to progress. For instance, when the initial User-Goal hypothesis is posted, it (like most others) is flagged with
a No-Support SOU. Since the goal is unsupported, a Decision hypothesis is created on the blackboard which also
has a No-Support SOU. To support this decision, an unsupported Object is created, which finally triggers the system
to query the server database for documents related to wordprocessing. Being a very common topic, the database has
numerous potentially useful references, which are returned and posted on the Document level of the blackboard. These
references, however, are not complete documents; they are just the characterizations of particular documents which
were made at some point in the past. As such, they are each flagged with a Uncertain-Support SOU since the source
(the server database) may be out of date.

At this point the system must make a decision regarding which source of information to pursue, since there is
an abundance of references but limited bandwidth for retrieval. One is selected based on its recency value (how old
the document is) and number of references (how many times similar pages referred to it), and its URL is submitted
for retrieval. The document is retrieved and posted to the blackboard successfully, at which point it is given to the
information extraction component for analysis. The information extraction component discovers the existence of a
(possibly) usable product called Word, which is posted to the Object level of the blackboard. Using this new product
name, the keywords describing all the document references on the blackboard are examined to find a promising match.
A new document is then selected and retrieved, after which is it analyzed by the information extraction module.

At this point something unexpected occurs. Instead of providing more detailed information relating to Word, the
system discovers that the document discusses a new competing product called WordPerfect, which again initiates the
creation of a new Object on the blackboard. Neither the existing document references, nor any entry in the server
database contain the product’s name in its keyword list (as would be expected with a completely new product), so
a different information retrieval process must be attempted. The system proceeds to search the database for sources
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whose category is defined as ”search”, which corresponds to a URL search engine like InfoSeek or AltaVista. One
such location is returned, and is submitted along with a query string to the Web Retriever. The results of this search are
subsequently parsed, and used to create a number of new references to choose from. Information retrieval continues
iteratively; sources of information related to known products are sought out and retrieved in an attempt to form a
general overview of the possible decision alternatives which can be taken. Unexpected results are taken advantage of
to reduce the amount of effort necessary to characterize known products and to produce alternate decision hypotheses.

As the system approaches the client’s specified search time constraint, the planner determines that a decision must
be reached based on the information that has been gathered thus far. Using the constraints specified in the User-
Goal hypothesis, each product is inspected to determine which maximizes the user’s perceived benefits. The selected
product is then returned to the user, along with a graphical representation of the evidence which lead to that decision.

5 Conclusions and Future Work
In light of the current explosion of on-line information sources, the emphasis in the demands that users will place
on the next generation of information systems will shift toward proactively gathering and integrating information to
support a given client’s high level objectives. In the context of supporting a product-oriented decision process, this
means gathering relevant information, extracting key features, and using the extracted information to further drive and
refine the search and to support differential diagnoses to compare various products.

In order to accomplish these ambitious goals, we have proposed an IG agent whose architecture is comprised of
several sophisticated problem solving components. The RESUN planner component plans to gather information and
responds to newly extracted information; the IE system creates structured data from unstructured text; and the Design-
to-Criteria scheduler performs time/quality/cost trade-off analysis. The higher-level components interact and reason
about Web particulars via the Web retrieval tools and the server information database.

Particular aspects of the IG problem are analogous to the signal interpretation task. For example, in both domains
the objective is to create higher level representations from lower-level data, and in both domains uncertainty about the
lower-level data affects higher-level conclusions and hypothesis. To cope with information-centric uncertainty, our
system uses the RESUN planning system that explicitly represents, reasons about, and works to resolve sources of
uncertainty associated with hypotheses generated during interpretation problem-solving.

We have implemented a preliminary system consisting of the RESUN planning component, the IE system, and
the Web interface tools. The preliminary system plans to gather information, gathers it, extracts key features from
unstructured text, and replans accordingly. The system does not reason about time/quality/cost trade-offs nor does it
do any form of meta-reasoning about its actions. However, this functionality will come from the integration of the
Design-to-Criteria scheduler which will take place in the next few months.

Longer term project goals include the integration of a multi-agent coordination component to provide scalability
and the transition from a single gathering agent to a multi-agent information system. The addition of a high-level
decision theoretic controller is also on the longer term agenda as is the development of a suite of more simple text
processing tools that locate structure in HTML documents to create structured data from text marked-up in the HTML
format.

On the research front several key issues must be addressed. Aside from research issues centering on the individual
components (e.g., a negotiation interface between the scheduler and the planning component, and improvement of
the IE technology), we must also address aggregate system evaluation. Clearly we must combine the precision/recall
(P-R) evaluation approach used in information retrieval with the template comparison evaluation approach used for
information extraction systems, but this will still not provide the whole picture. Recall that the objective is to partially
automate the task of a human controller, in the face of limited resources (time, money) and a huge search space. This
objective translates into a satisficing search strategy. In other words, not only will results differ for different product
decisions, but results will differ depending on the time and/or cost alloted for search. An evaluation process must
address this added dimension, in addition to providing some aggregation of P-R scoring on individual retrieved docu-
ments and template scores for extracted information. In fact, since the system’s P-R scores may be highly dependent
on the P-R of external sources used during the gathering process (e.g., InfoSeek), it is not at all clear that the P-R
measure should be applied to all information gathered during the search process. Given these concerns, it appears that
a comparison with a human controller/decision maker is the best yardstick by which to measure performance, but this
topic requires further scrutiny.
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