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Abstract. Report generation is an integral part of many analytical tasks such as 
intelligence analysis. Thus, an important issue in developing cognitive assistants 
for analytical tasks is how the cognitive assistant may help a human analyst in 
generating reports. In this paper, we first describe the task of report generation 
in intelligence analysis. Then, we describe a scheme for enabling a cognitive 
assistant to generate self-explanations. The proposed scheme uses introspection 
over the knowledge, reasoning, and conclusions of the cognitive assistant. 
Finally, we analyze the introspective scheme for generating self-explanations 
from the perspective of report generation.  

 
 
1. Introduction 
 
Since intelligence analysis is in part an information-processing activity, information 
technology is playing an increasingly important role in many tasks of intelligence 
analysis. In particular, research in human-centered computing is developing cognitive 
assistants for a variety of high-level tasks of intelligence analysis such as sensemaking 
and dataforaging, e.g., Jigsaw [31], a tool for visualizing information about relations 
among entities such as people, organizations, places and times, ACH [24], a tool for 
analyzing competing hypotheses based on a set of evidence, AHEAD [23] that uses 
past cases to build evidence for and against a hypothesis in a new intelligence 
situation, Disciple-LTA [33] that helps analysts build structured arguments, and 
RESIN [19,36] that forages data from multiple multimedia data sources.   
 
Report generation is another important high-level task in intelligence analysis [18, 
34]. However, insofar as we know, report generation so far appears to have received 
little attention in the development of cognitive assistants for intelligence analysis. 
This raises two sets of questions for our work. Firstly, what are the purposes, contents 
and structure of intelligence reports? As one may expect, a report may contain 
findings, assessments, and possibly recommendations, as well as explanations and 
justifications of the assessments and the conclusions. Thus, a second set of questions 
pertains to how a cognitive assistant may explain and justify its conclusions. In 
particular, what is the relationship between current introspective schemes for 
generating explanations of the knowledge, reasoning and conclusions of a cognitive 
agent and the information requirements of report generation?   



2. Threat Assessment in Intelligence Analysis 
 
The literature on intelligence analysis includes both cognitive accounts of intelligence 
analysis (e.g., [14, 25]) and analyses of information-processing techniques used in 
intelligence analysis (e.g., [18, 34]).  We know that sensemaking in intelligence 
analysis involves the tasks of recognizing and characterizing a problem based on 
some initial evidence about an event or activity; generating multiple explanatory 
hypotheses based on the evidence; collecting and assimilating additional data; 
evaluating the multiple explanatory hypotheses; and selecting the most plausible 
hypothesis. This analytical task is complex because of the constantly evolving, and 
often unreliable and conflicting nature, of the data [28]. The evolving nature of data 
implies a need for ongoing monitoring and continual generation and evaluation of 
hypotheses so that new evidence can be accounted for as it arrives and the most likely 
explanation can be produced at any time.  
 
Table 1 shows a taxonomy of intelligence tasks based on Jones [15]. According to 
Jones, simplistic tasks seek to find a fact; deterministic tasks seek a single answer but 
the answer is the result of a calculation; random tasks look for answers where there 
are multiple answers but all those possibilities can be identified; and indeterminate 
tasks are those for which there are multiple possible answers but not all possible 
answers can be identified. Table 1 suggests that random and indeteminate tasks, such 
as threat assessment, are the ones that are most likely to benefit from the 
technological support that automated agents promise to provide. Agents that help 
analysts avoid the common biases will most certainly be perceived to be valued 
cognitive assistants when tasks are hard, the number of constraints is high, and the 
limits of cognitive resources are exceeded.  
 
3. Intelligence Reports 
 
The purposes, contents, structure and appearance of intelligence reports are diverse 
[18]. The desired content and format are specified by the customer and communicated 
during the actual tasking to the analyst. Reports may be hard and/or soft copy, oral 
and/or written, and even video. They may be formal or informal, and textual or 
graphical. Whether an analyst is tasked to find a fact (i.e. simplistic task in Table 1), 
or to produce a one-paragraph inclusion in a Presidential Daily Brief, or to contribute 
to a community-wide National Intelligence Estimate, the underlying analysis is 
expected to adhere to rigorous standards.  
 
Figure 1 illustrates a template that has been extensively used for intelligence reports 
in a variety of studies [17,29] with all-source analysis. In the Discussion section in 
this template analysts are required to indicate gaps in the material available for their 
reports; there are mechanisms within each agency for initiating a search for material 
that might resolve the gap. Explicit acknowledgment of a gap is helpful to the 
consumer in interpreting the report. The appendix materials in this template encourage 
the analyst to use structured methods for tracking the hypotheses, for evaluating the 
evidence for and against the hypotheses, and externalizing assumptions. 



 



 

 
Until the United States Office of the Director of National Intelligence (ODNI) 
assumed overall control of all 16 intelligence agencies, each agency employed its own 
methods for assessing the quality of the reports generated by its analysts. One of the 
first efforts of the ODNI was to establish community-wide criteria for judging 
analytic quality; the guidelines were distributed as Intelligence Community (IC) 
Directive 203, effective June 21, 2007. These criteria are intended to be used by all 
agencies and for all activities including analytic production, analysis teaching 
modules and case studies used throughout the IC. The IC Analytic Standards are: 

A. Objectivity – requires analytic and informational functions be done from an 
unbiased perspective. 

B. Independent of Political Considerations – provide assessments that are not 
distorted or altered to support a particular policy, political viewpoint, or 
audience. 

C. Timeliness – reports are to be produced in time to allow customers adequate 
time to factor them into their required decision-making. 

D. Based on All Available Sources of Intelligence – include all relevant 
sources; identify critical gaps and work with collectors to remedy those gaps. 

E. Exhibits Proper Standards of Analytic Tradecraft 
1. Properly describes quality and reliability of sources 
2. Properly caveats and expresses uncertainties or confidence in analytic 
judgments 
3. Properly distinguishes between underlying intelligence and analysts’ 
assumptions and judgments 
4. Incorporates alternative analysis where appropriate 
5. Indicates relevance to US national security  
6. Uses logical argumentation 
7. Points to consistency with earlier reports or highlights change  
8. Makes accurate judgments and assessments 

Task Description: 
Outline: 

Executive Summary: 
Discussion (include: 1. Intelligence gaps and 2. Potential for Denial and 
Deception) 
Assessment 

       End Notes/Citations 
Appendix:  

Hypotheses Investigated/ Key questions 
Key Assumptions: 
Key pieces of evidence 

Confidence in assessment on a scale of 1-10 
          1       2       3      4      5       6         7       8      9      10 
not at all confident                              very confident 
 
Figure 1: A Template for Intelligent Reports 
 



Since the promulgation of IC Directive 203, agencies have begun to regularize their 
quality standards. This process is likely to take some time as each agency will want to 
ensure that its prior assessment methods are captured by implementation of the new 
criteria.  
 
4. A Computational Assistant for Threat Assessment 
 
As part of a project sponsored by the United States Department of Homeland Security 
under the auspices of the Pacific Northwest National Laboratory, we are presently 
developing component technologies for an interactive cognitive assistant for threat 
assessment. The components include an automated sense-making agent called STAB 
[1, 2], an automated data-foraging agent called RESIN [19,36], and a visual assistant 
for human analysts called Jigsaw [31]. Here, due to limitations of space, we briefly 
describe only STAB, but it is important to note that STAB is intended as one tool in a 
suite. 
 
STAB views the task of threat perception as that of abducing a story such that the 
intentional and causal  relationships in the story explain the current data and make 
verifiable predictions about both the future and the past. The generic stories are 
organized as hierarchical scripts and represented in the Task Method Knowledge 
knowledge representation language (TMKL) [20,21,22]. Thus, each script is 
organized in a task-method-subtask hierarchy, where the primitive tasks at the leaf 
node correspond to primitive actions. Methods in TMKL are state transition machines 
that recursively compose primitive tasks into compound tasks, where the primitive 
tasks correspond either to a primitive action in the world, to a chunk of knowledge 
available in memory, or an executable procedure.  
 
STAB operates in the domain of Visual Analysts Science and Technology (VAST) 
datasets [26,35]. The VAST datasets have been generated for the VAST symposium 
contests by the Threat Stream Generator project at the Pacific Northwest National 
Laboratory. Each dataset contains over a thousand news stories and a small number of 
other data such tables, maps and photographs. We manually extract the facts and 
events in the dataset into datastreams that are input into STAB.  
 
As events in the input data stream arrive incrementally, STAB matches the events 
with the leaf task nodes in the  scripts. This matching is done using feature vectors. 
Figures 2 illustrates the script Robbing a Store, whose task nodes match the input 
event Break(Window). The matching task nodes are shown in yellow. STAB uses the 
hypotheses to generate expectations about additional data not yet seen by STAB.  
 
Commit Vandalism (not shown here) is another script containing the matching task 
node of Break(Window). While the hypothesis of Robbing a Store generates the 
expectation of Take(Money) and Commit Vandalism generates the expectation of 
Stole(Null). As additional data in the form of event Take(Money) arrives as input to 
STAB, the system matches the data with the expectations generated by the candidate 
hypotheses. This may lead to abandonment of some hypotheses. For example, in the 
current scenario, the event Take(Money) results in the refutation of the Committing 



Vandalism hypothesis (shown in red/darker shade), and the acceptance of the Robbing 
a Store hypothesis. The confidence value of the hypothesis Robbing a Store measures 
how many of the task nodes in a task-method tree of the hypothesis were matched by 
the input data. STAB keeps track of all competing hypotheses, the evidence for and 
against each hypothesis as well as the confidence value for each hypothesis. 
 
5. Introspective Self-Explanation in the Sensemaking Agent 
 
In general, explanations can be of two types [16]: abductive explanations and self-
explanations.   Abductive hypotheses provide explanations for a set of evidence, and 
typically have associated confidence values. In threat assessment, for example, an 
abductive hypothesis may explain how a sequence of apparently unrelated events 
forms a pattern of activity. An agent’s self-explanation describes the agent’s 
reasoning in reaching a conclusion. A self-explanation in general may have three 
components [7]:  justification of the conclusions, explanation of the reasoning 
process, and justification of the domain knowledge.  In threat perception, for example, 
a conclusion about a specific pattern of activity may be justified by the evidence 
supporting it and the evidence that does not support other hypotheses, the reasoning 
process may be explained in terms of the steps of the process including collection of 
evidence and analysis of competing hypotheses, and the domain knowledge may be 
justified in terms of past cases of threat perception.  
 
In earlier work on introspective self-explanations [13], we posited that the generation 
of useful self-explanations in automated agents requires introspection by the agent 
over its own reasoning, knowledge and conclusions.  Introspection in turn requires a 



representation of the tasks the agent addresses, the methods it uses to address them, 
and the knowledge used and created by the methods. Thus, we postulate that 
introspection over the task structure of the analytical process may enable self-
explanations in automated agents. Task structure refers to the recursive task-method 
decomposition of an analytical task into primitive tasks. The task structure also relates 
the methods with domain knowledge. Introspection pertains to the ability to capture 
the invocation of tasks and methods, and the use of knowledge by them. Since the 
task structure is a recursive decomposition, introspection over the task structure may 
enable generation of explanations at multiple levels of abstraction. An opposing 
hypothesis might be that the self-explanation of an agent can be in the form of the trail 
of decisions made by the agent (as, for example, in audit trails). If our postulate is 
correct, then we should find that introspection over the task structure of threat 
perception provides the right level of abstraction for the explanations to be useful for 
human analysts.  
 

 

The origin of this postulate can be traced to early work on knowledge systems. 
Chandrsekaran, Tanner & Josephson [6] proposed that the task-level was the right 
level for generating computational explanations. NEOMYCIN [9], a 
reimplementation of MYCIN [3] in terms of the task structure of diagnosis, provided 



explanations at a more useful level of abstraction for human comprehension. XPLAIN 
[32] contained a declarative model of clinical decision making for generating 
explanations. Research on knowledge systems since then has developed several 
languages for describing problem-solving tasks and methods, including Generic Tasks 
[4, 5, 8], CommonKADS [30], Protege [11], TAEMS [10], and UPML [12]. We now 
know that because problem-solving methods relate knowledge, inference and control, 
declarative representations of the methods in the task structure of an agent enable 
deeper and more perspicuous explanations.  
 
We envision a Meta-STAB component based on the Reflective Evolutionary Mind 
(REM) functional architecture [20, 21, 22]. REM encodes the meta-reasoner in the 
same TMKL language as the reasoner itself, which provides uniformity of knowledge 
representation. Figure 3 illustrates  Meta-STAB’s encoding for a small portion of 
STAB. The ovals in the figure represent tasks; thus, the highest-level task is Generate 
Explanations. The rectangles represent methods used by STAB; thus the Pattern-
Match Method addresses the task of Generate Hypotheses. This Pattern-Match 
Method decomposes the Generate Hypotheses task into two simple subtasks: Feature 
Vector Matching and Retrieval from Library. The transition machine for the Pattern-
Match Method depicted in the rounded rectangle represents the control of processing 
of the subtasks. In general, the control of subtasks need not be linear; similarly, in 
general, multiple methods may be available for addressing a particular task. The 
Retrieve from Library Task is directly encoded in STAB; a primitive, or directly 
encoded, task may use both some domain knowledge, K, and some procedure, P. In 
this way, the TMKL model of STAB in Meta-STAB explicitly captures the entire task 
structure of STAB including the relationship between tasks, control, inference and 
domain knowledge.  

When input data arrives, Meta-STAB executes its task structure, dynamically 
selecting and invoking tasks and methods up to the level of primitive tasks. This 
selection and invocation of tasks and methods depends on the knowledge conditions 
generated by the preceding tasks. The primitive tasks in turn execute the 
corresponding code in STAB. Meta-STAB keeps track of the trace of processing in 
the vocabulary of tasks and methods.  

 
6. Discussion 
 
How well do the explanatory capabilities of STAB and Meta-STAB match the needs 
of report generation in intelligence that we described earlier in Section 3? The 
template in Figure 1 refers to both the contents and the format of an intelligence 
report. Clearly, explanatory capabilities of automated agents such as STAB and Meta-
STAB are confined to the issue of content.  However, contents of explanations 
generated by automated agents appear closely aligned with the criteria for a report. In 
particular, generation of a report requires explanations of several different kinds: (1) 
Justification of the conclusions, (2) Confidence values for the conclusions, (3) 
Explanation of reasoning, (4) References to alternative hypotheses, and (5) 
References to data sources including the reliability of those sources. 



STAB itself generates the justifications for its conclusions in the form of evidence in 
support of each conclusion. Indeed, STAB also collects and reports the evidence 
against each of its conclusion, which helps capture some of the uncertainty in the 
conclusions. STAB also generates confidence values for each of its conclusions based 
on the degree of match between the input events and the tasks in the task structure of 
the story plots.  
 
Meta-STAB generates explanations of the analytical process in the task-method 
language. The self-explanation references the alternative hypotheses considered and 
the reasons for rejecting them. In addition, since TMKL directly captures the 
relationship between tasks and knowledge, Meta-STAB references the data sources 
and justifies its decisions by relating them to its domain knowledge and data sources.  
 
Further, the explanations generated by Meta-STAB are both causal and intentional. 
The explanations are causal because the execution of a task in the task structure sets 
up the knowledge conditions for the selection, invocation and execution of the 
succeeding task. Thus, the execution of various tasks is linked by the knowledge 
states they take as inputs and give as outputs. The explanations are intentional because 
the execution of a task (except the dummy task at the root of the task structure) takes 
place in the context of some higher-level task. Thus, this scheme can help answer not 
only the question of what STAB is doing at any given state of processing (the task), 
but also how (the method), and why (the higher-level task). Further, since the  
analytical process can be explained to different levels of depth in the task structure of 
STAB, the level of abstraction of the explanations is tunable to different goals and 
queries of the human analyst. 
 
Thus, we posit that the self-explanations of the automated agents may provide a basis 
for interactive generation of intelligence reports. This is because of the similarity 
between the requirements for the self-explanations generated by automated agents and 
the requirements for intelligence reports generated by human analysts. If this postulate 
is correct, then we should find that while the structure of self-explanations generated 
by the agents and the intelligence reports generated by an analyst may be different, 
their contents will be similar, and, in a mixed initiative system, the agents’ self-
explanations may directly provide much of a report’s contents. 
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