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Abstract—In this paper, our goal is to achieve the emergence
of cooperation in self-interested agent societies operating on
highly connected scale-free networks. The novelty of this work
is that agents are able to control topological features during
the network formation phase. We propose a commitment-based
dynamic coalition formation approach that result in a single
coalition where agents mutually cooperate. Agents play an iter-
ated Prisoner’s Dilemma game with their immediate neighbors
and offer commitments to their wealthiest neighbors in order
to form coalitions. A commitment proposal, that includes a
high breaching penalty, incentivizes opponent agents to form
coalitions within which they mutually cooperate and thereby
increase their payoff. We have analytically determined, and
experimentally substantiated, how the value of the penalty should
be set with respect to the minimum node degree and the payoff
values such that convergence into optimal coalitions is possible.
Using a computational model, we determine an appropriate
partner selection strategy for the agents that results in a network
facilitating the convergence into a single coalition and thereby
maximizing average expected payoff.
Index Terms—Scale-free network, emergence, complex network
dynamics, multiagent coalition, commitment.

I. I NTRODUCTION

There has been a great deal of interest in the multiagent
systems (MAS) community about the emergence and mainte-
nance of cooperation among artificial agents [1], [2]. One of
the challenging questions addressed in these works is to design
autonomous systems in which agents work together to achieve
common shared goals. For example, in an emergency disaster
management scenario cooperation among the agents in the
MAS is required to perform joint tasks [3]. The heterogeneous
agents in this scenario are driven by their own local goals.
Therefore, it is important to establish cooperative behavior
with regard to a global goal for maximizing reward.

Traditionally the tension between personal and social goal
is modeled by the Prisoner’s Dilemma (PD) game in which
the only dominant strategy equilibrium is defection which
is not pareto efficient [4]. The PD game offers a powerful
metaphor for understanding the challenges of the emergence
of cooperation in the face of myopic selfish behavior. In PD,
selfish and rational agents try to maximize their utility while
interacting with each other. When the PD game is played
repeatedly among two agents, it has been shown that the

“tit-for-tat” strategy facilitates cooperation [5]. However, in
MAS, repeated interaction does not guarantee the evolutionof
cooperation [6]. Moreover, high connectivity among the nodes
results in less cooperation [7].

In this paper, our primary goal is to facilitate the emergence
of cooperation in large MAS operating on scale-free (SF)
networks where such cooperation helps maximize the global
utility of the MAS. We consider the agents in the SF networks
have high connectivity and play an iterated PD game with
their immediate neighbors. To achieve this goal we proposea
commitment-based dynamic coalition formation approach
that leverages the complex network dynamics.

Dynamic Coalition Formation: Coalition formation pro-
vides a mechanism for promoting cooperation in complex
networks [8], [2]. A coalition is defined as a group of agents
who have decided to cooperate in order to perform a common
task. By increasing the organizational level through coalitions,
cooperation can be enhanced and maintained. Our primary
contribution in this paper is a dynamic coalition formation
approach that is based on commitment between agents. A
commitment is a promise that an agent offers to another agent
in order to influence that agent’s strategy. An agent makes use
of commitments to exploit the strength of its own strategic
position [9]. It has been shown in [1] that commitment can be
used to foster cooperation among self-interested agents innon-
iterated PD game. Typically a commitment proposal includes
a penalty to ensure that the breach of commitment would
result in incurring a cost [1]. We enable the self-interested
and rational agents to offer commitments to their wealthy
neighbors with whom they intend to form coalitions. The agent
that offers a commitment bears the cost of maintaining the
coalition and promises to pay a penalty should it decide to
leave the coalition. The penalty threshold is set such that it
provides sufficient incentive to an otherwise non-cooperative
neighbor agent to form coalition and thereby cooperate. An
agent moves into a different coalition with better social benefit
if it is capable of paying the penalty.

In a networked interaction scenario, the challenge is to
determine a penalty that facilitates the convergence into a
single coalition and at the same time is high enough to
incentivize the opponents to form coalitions. We analytically
show how the penalty could be set based on the minimum



number of immediate neighbors or minimum node degree
of the SF network and the payoffs; and provide a sufficient
condition that requires to be fulfilled in order for optimal
coalitions to emerge.
Complex Network Dynamics: Our secondary contribution
in this work is that we investigate the effect of the com-
plex network dynamics over the commitment-based dynamic
coalition formation approach. It has been shown previously
that although defection is the dominant strategy in the iterated
PD game [6], the likelihood of cooperation is remarkably in-
creased if the agent interaction is constrained by the underlying
network topology [10], [11]. However, in these approaches
agents neither form the network nor use the network dynamics
to enhance the emergence phenomenon. These works start by
assuming a pre-established static complex network platform
and then employ agents on the nodes of the network for mutual
interactions. In our work, instead of assuming a given network
we enable the agentsto form the network by choosing their
interaction partners. We determine the topological insights
that, when embedded into agent partner selection strategy,
result in a network always leading towards the emergence of a
stable single coalition. In order to gain the topological insights
for network formation, we develop a computational model and
study how our dynamic coalition formation algorithm performs
on various types of SF networks by varying the minimum
node-degree, degree-heterogeneity and the clustering coeffi-
cient. Specifically, we investigate how a dynamical processof
a network, namely the coalition formation, is influenced by its
structural properties.

To summarize, in this paper we emphasize the significance
of employing “network thinking” by the agents to control their
dynamics and the dynamical processes of the network.This
work advances the state of the art by (i) developing a
commitment-based dynamic coalition formation approach,
(ii) by providing an analytical study about how an effective
commitment mechanism is related to the topology of the
network and (ii) by determining the topological insights for
the agents to choose their interaction partners to form a
dynamically growing SF network that enhances the overall
cooperation with maximized average expected utility.

The remainder of this paper is organized as following. We
first discuss the relevant literature in section II followedby
a description of the two network models for studying the
dynamical properties of the SF network. Then we present our
commitment-based coalition formation approach in sectionIII.
We provide an extensive computational study in section IV
and finally conclude with a summary of our observations and
discussion of future work in section V.

II. RELATED WORKS

The dynamic coalition formation approach in this paper
is suitable for large networks. It differs from the existing
coalition/team formation approaches in the MAS research
community that require the agents to consider all other agents
in the network making the process computationally intractable
for large networks [12], [13]. Moreover, their agents are

constrained to stay in a coalition until the goals of the coalition
are accomplished. While these works emphasize the design
of negotiation protocols and efficient task distribution, our
goal is to promote cooperation at the network level. Our
commitment based approach also differs significantly from the
existing research works in this area that address the issue of
formalization and implementation of commitment mechanisms
in MAS interactions [14].

Our approach is inspired from [1] in which the use of com-
mitment is shown to facilitate the emergence of cooperationin
a population of agents that play non-iterated PD game. In [1],
a variant of the PD payoff matrix is defined to incorporate
the penalty and commitment management cost and thereby
to provide sufficient incentives for the agents to consider the
advantage of mutual cooperation. Their work is based on
an unstructured population with random interactions among
the agents that use a social learning model and mutation for
strategy adaptation. However, they did not consider the effect
of their approach in iterated PD game and the role of network
topology.

[2] and [8] use a single coalition emergence approach
to achieve full cooperation in complex networks. [2] uses
a tax collection and information sharing model that require
multi-hop communication with high overhead while [8] uses
a centralized voting method to decide the strategy of the
coalition members.

A work close to our network formation approach is done
by [15] that study the emergence of cooperation using a
network growth model based on an evolutionary preferential
attachment algorithm. This work provides a useful understand-
ing about how the microscopic dynamics could lead to the
coevolution of the structure and the macroscopic behavior of
the SF network. However, the emergence offull cooperation
seems to be impossible if the payoff for the temptation to
defect is larger than the payoff for the reward.

A parallel thread of research involves studies by physicists
on the issue of cooperative behavior among selfish agents
over complex networks in the framework of evolutionary game
theory. [10] shows that the growth and preferential attachment
rule of the SF network significantly enhance the cooperative
behavior. [11] studies the impact of average degree on the
outcome of the PD game played over SF, small-world and
random networks. The effect of high clustering to enhance
cooperation over the SF network has been studied in [16].

The above research, conducted by eclectic disciplines, em-
phasize the fact that addressing the topological issues of com-
plex networks for enhancing the cooperation is as importantas
formulating appropriate interaction strategies for the agents.

A. Network Models

In the context of social systems and in many real world
applications we observe that the network exhibits both
node degree-heterogeneity and high clustering. The standard
Barabasi-Albert (BA) SF network model [17], however, suffers
from low clustering. Moreover, the heterogeneous degree-
distribution of the BA model is fixed by the constant power law



scaling-exponent. Hence, to emulate more realistic scenarios,
we consider the following two SF network models that we use
to build a computational model for studying the performance
of our approach and to gain insights about the impact of
topological features over the process of coalition emergence:
BA Model

The BA SF model [17] is formed as follows:
(i) Growth: Starting fromm0 nodes, at every time step a

new node is added withm (m <= m0) edges which connect
between the new node andm different previously existing
nodes.

(ii) Preferential Attachment: A node i is chosen to
be connected to the new node according to the probability∏

n→i =
A+ki∑
j
(A+kj)

whereki is the degree of nodei andA is
a tunable parameterrepresenting the initial attractiveness of
each node.
Extended BA Model

The extended model [18] follows the growing process of
the BA model that starts withm0 nodes. At every time step
a new nodei is added to the network and gets connected
with m (m <= m0) of the previously existent nodes. The
first link of node i is added to nodej of the network (with
j < i) following the preferential attachment rule of the BA
model. The remainingm− 1 links are added in two different
ways: (a) with clustering probabilityp the new nodei is
added to a randomly chosen neighbor of nodej and (b)
with probability (1 − p) node i gets connected to one of
the previously existing node using the preferential attachment
rule again. This procedure ensures a degree distribution of
p(k) ∼ p−γ with a tunable clustering coefficient.

III. C OMMITMENT BASED COALITION FORMATION

In this section, we present the formal model for our pro-
posed coalition formation approach.

A. Model

The agent interactions in the MAS are specified by an
undirected graphG(V,E) where V is the set of vertices
(or nodes) andE ⊆ V x V is the set of edges. Each
node corresponds to an agent.1. The numbers of nodes are
referred byn. Once the graph or the network is formed by the
agents it becomes fixed. Two nodesvi and vj are neighbors
if (vi, vj) ∈ E. The neighborhoodN(i) is the set of nodes
adjacent tovi. That is,N(i) = {vj |(vi, vj)} ∈ E ⊂ V and
|N(i)| is the degree of nodevi.

The graph follows scale-free property in which the distri-
bution of node degree follows a power-law,Nd ∝ d−γ , where
Nd is the number of nodes of degreed andγ is a constant. We
have described the scale-free graph models in detail in section
II.

Our proposed decentralized coalition formation approach
requires the agents to communicate only with their immediate
neighborhood to form coalitions. We assume that agents are
self-interested and rational. To initialize, we enable theagents

1Throughout the paper, we use agent and node interchangeably.

to form the network by choosing their interaction partners
dynamically. The adjacent agents (within single-hop distance)
are defined as theneighbors. Every agent is equipped to play a
2-personiterated PD game with each one of its neighbors and
their interactions are represented by the network links. The
agents start playing the PD game after the network is formed
and we consider the final network as a closed system.

Agent i’s payoff is denoted byu(i, j) which agenti obtains
by playing a PD game with its neighborj. After every round of
the game, the payoff received by playing the PD game with
the neighbors gets accumulated and the accumulated payoff
is defined as

∑m
j=1 u(i, j), where j refers to the neighbors

of i. We assume that agents know the accumulated payoff
of their neighbors. Every agent has a fixed strategy for each
one of its neighbors, which is either to cooperate (C) or to
defect (D). In a2-personPD game setting these two strategies
intersect at four possible outcomes represented by designated
payoffs: R (reward) and P (punishment) are the payoffs for
mutual cooperation and defection, respectively, whereas S
(sucker) and T (temptation) are the payoffs for cooperation
by one player and defection by the other. The payoff matrix is
represented by Table I. For the PD game, the payoffs satisfy
the conditionT > R > P > S and for iterated PD’s we
requireT + S < 2R.

TABLE I
PAYOFF MATRIX FOR THE PRISONER’ S DILEMMA GAME

C D
C (R,R) (S,T)
D (T,S) (P,P)

The iterated PD game proceeds in rounds and each round
has three phases: (i) the agents play the game with all the
neighbors using fixed strategies and compute the accumulated
payoff, (ii) based on the payoff information of the neigh-
borhood, the agents form/join coalition and (iii) update the
strategies used in the coalition formation algorithm.

We define two types of agents: independent agents and
coalition member agents. These two types are mutually
exclusive. Initially all the agents are assumed to be in-
dependent.Ind(vi) refers to a set of independent agents
i : v1, v2, ......., vn. An agent vi makes a commitment
Comm(vi, vj) to its neighbor agentvj and forms a coalition
Coa(vi, vj). A coalition member agent is committed to the
coalition; it always cooperates with its neighbors belonging to
the same coalition and defects with others. In other words, we
implement the strategy:no cooperation without commitment.
However, an independent agent takes the interaction strategy
that the majority of its neighbors adopted in the previous
round. We define the coalition formation process and the
algorithm in the next sub-section.

B. Definitions, Algorithm and Theorem

Definition 1. Commitment: An agentvi makes a commitment
Comm(vi, vj) to its largest accumulated payoff neighborvi



with whom it intends to form a coalition. The commitment
proposal includes the following:

1) vi would bear a small management costβ to maintain
the coalition

2) vi would pay a penaltyα if it unilaterally breaks the
coalition and vice versa

Definition 2. Coalition Formation: If the accumulated payoff
of an independent agentvi ∈ Ind(vi) is smaller than the
accumulated payoff of its neighborvj whose payoff is the
largest invi’s neighborhood, i. e., if

∑
u(vi) <

∑
u(vj) and

(vi, vj) ∈ E, thenvi forms a coalitionCoa(vi, vj) with vj by
making a commitmentComm(vi, vj) as defined in Definition
1. Agentvi cooperates with the members of the same coalition
and defects with others belonging to it’s neighborhood.

As in [1], the management cost is very small compared to
the reward, i. e.,β << R and the penaltyα is larger than
the temptation payoff, i. e.,α > T in order to offer enough
incentive to an opponent to form a coalition.

Initially there would be multiple coalitions where agents
may find it profitable to leave their existing coalitions and join
new ones. We define the inter-coalition dynamics as following:

Definition 3. Inter-Coalition Dynamics: If the accumulated
payoff of a coalition agentvi is smaller than the accumulated
payoff of its neighborvj that belongs to another coalition,
whose payoff is the largest invi’s neighborhood, i. e., if∑

u(vi) <
∑

u(vj), (vi, vj) ∈ E and Coa(vi) 6= Coa(vj),
thenvi leaves its existing coalition and joins the coalition of
vj if the following condition is fulfilled:

∑
u(vi)

2
> α

Definition 4. Coalition Convergence: After repeating the
Inter-Coalition Dynamics phase multiple times the network
converges into a single coalition where no agent either finds
it beneficial to leave the existing coalition or to form a new
one.

Algorithms: Our Coalition Formation with Network Dynam-
ics Algorithm (CFNDA) has 3 steps: network formation, initial
coalition formation and decentralized coalition formation de-
scribed below by procedures 1, 2 and 3 respectively.

Network Formation: In the beginning agents choose their
interaction partners and form the network as described in
Procedure 1. Agents are enabled to set the values of their initial
attractiveness parameter (A) and the clustering probability (p).
Agents may either form the network according to the BA
model (lines 3-6) or may use the extended BA model (lines
7-12). In the BA model, all the links (m) of the new node
are connected to the existing nodes using the preferential
attachment rule (line 5). On the other hand, in the extended
BA model only the first link of the new node is added using
the preferential attachment rule (line 8). The remaining links

Procedure 1: NetworkFormation
Require: m0 initial nodes
Require: number of edges (m) of the newly
connected node:m ≤ m0

1. setInitialAttractiveness() = A;
2. setClusteringProbability() = p;
3. implementBAModel;
4. WHILE(m ≤ m0)
5. {linkToNode(i):

∏
n→i =

A+degreei∑
j(A+degreej)

;}

6. end;
7 implementExtendedBAModel;
8. linkToNode(i):

∏
n→i =

A+degreei∑
j(A+degreej)

;

9. WHILE(m ≤ m0 − 1)
10. {linkToNeighborOfNode(i)withProbability(p);
11. linkToNode(i)withProbability(p-1):

∏
n→i =

A+degreei∑
j(A+degreej)

;}

12. end;

Procedure 2: InitialCoalitionFormation
Require: Accumulated payoff is transparent
only to immediate neighbors
Require: All the agents are Independent
1. networkFormation();
2. randomStrategySelection();
3. playPDGamewithNeighbors();
4. FOR each agenti:= 1 to n
5. IF maximumPayoffNeighbor(j) AND
6. payoff(i) < payoff(j)
7. offerCommitmentTo(j);
8. formCoalitionWith(j);
9. payManagementCostBy(i);
10. ELSE
11. remainIndependentAgent(i)
12. END FOR

of the new node (m0 − 1) are added to the randomly chosen
neighbors of the first neighbor of the new node with the
probability p (line 10) or using the preferential attachment
rule with the probabilityp-1 (line 11). By varying the value
of A, the degree-heterogeneity of the resultant network can
be controlled andp determines the clustering level of the
extended BA model. Using a computational model described
in section IV, we determine how the agents should set these
two topological parameters such that the resultant network
enhances the emergence of a single coalition when agents form
coalitions using algorithms 2 and 3.

Initial Coalition Formation: Procedure 2 depicts how
initial coalitions are formed at the beginning of the game.
Every agent starts out as an independent agent and there is no
coalition. Agents choose their interaction strategy randomly
and generate the payoff according to the payoff matrix in
Table I by playing a2-personPD game with each one of
its neighbors (lines 2-3). Then in lines 5-9, for every agentif
the largest payoff neighborj’s accumulated payoff is larger
than the agenti’s payoff, it offers commitment toj and
forms a coalition. It also bears the management cost of that
coalition. An agent without any coalition members remains
independent (line 11). After the first round, there would be



Procedure 3: Decentralized Coalition Formation Algorithm
Require: Accumulated payoff is transparent only
to immediate neighbors
1. initialCoalitionFormation();
2. playPDGamewithNeighbors();
3. FOR each agenti:= 1 to n
4. IF coalitionAgent(i) AND
5. maximumPayoffNeighbor(j) AND
6. payoff(i) < payoff(j)
7. IF (notIndependentAgent(j))
8. IF u(i)/2 > α
9. {offerCommitmentTo(j);
10. joinCoalitionOf(j);
11. payManagementCostBy(i)};
12. ELSE IF (independentAgent(j))
13. GOTO lines 9-11;
14. IF (coalitionAgent(i) AND
15. disconnectedFromCoalition(i))
16. {becomeIndependentAgent(i)};
17. IF (independentAgent(i))
18. GOTO lines 5-13;
19. mutation();
20. END FOR

multiple coalitions. The number of coalitions will depend on
the size of the network.

Decentralized Coalition Formation: At the beginning of
every round each agent plays the PD game and employs the
coalition strategies to join/leave/switch or form a coalition
according to Procedure 3. In lines 4-11 every coalition member
agenti joins the coalition of it’s largest payoff neighborj if
one-half ofi’s payoff is larger than the penalty. Agenti offers
a commitment toj and bears the management cost of the
coalition. If j is an independent agent, theni forms a coalition
with it by offering a commitment and bearing the management
cost (lines 12-13). If agenti is a coalition member agent but is
disconnected from its coalition members (when an agent does
not have any one-hop link to other members of its coalition,
then it is considered to be disconnected from its coalition), it
becomes an independent agent (lines 15-16). However, ifi is
an independent agent then it forms a new coalition according
to lines 5-13.

Mutation : It is possible that some agents might become
stable within sub-optimal coalitions where the majority ofthe
neighbors do not belong to the agent’s coalition. In order
to allow these agents to move to optimal coalitions (which
maximizes their payoff), they are enabled to explore the
strategy space with a small probability. If the majority of a
coalition-agent’s neighbors are not its coalition members, that
agent becomes independent if one-half of its payoff is larger
than the penalty.

Proposition 1. For any connected graph G with n nodes and
(sufficiently) high penalty (α > temptation payoff), the agents
increase their payoff through the coalition formation process.

Proof:
Let us consider three agentsa1, a2 and a3 are playing an

iterated PD game with their immediate neighbors. Botha2 and

a3 are the neighbors ofa1. Assume that after the first round of
the game, the accumulated payoff ofa2 is the largest ina1’s
neighborhood, i. e.,

∑
u(a2) >

∑
u(a3) >

∑
u(a1). Now

according to the CFNDA, agenta1 will form a coalition with
a2 by making a commitment and will start cooperating with
the same coalition members in its neighborhood. This mutual
cooperation may increasea1’s payoff. However, it is possible
that a1 was a defector with its other neighbors; in that case
its payoff would not increase after joininga2’s coalition.

Now, in the next round of the game, after joining the
coalition if the majority of a1’s neighbors belong to the
same coalition, its payoff further increases through mutual
cooperation. With this increased payoffa1 will eventually
attract its non-coalition neighbors to joina1’s coalition. This
would result in a maximum payoff ofa1. On the other hand,
if the majority of a1’s neighbor do not belong to its coalition
and if one of the neighbors’ payoff happens to be larger than
that of a1’s payoff, thena1 will leave its existing coalition
and will form/join that neighbor’s coalition if

∑
u(a1)/2 > α

condition is satisfied. In the new coalition,a1’s payoff is
expected to increase further because its coalition partneris the
wealthiest ina1’s neighborhood and thereby it would attract
more agents to join its coalition increasing the likelihoodof
mutual cooperation. However, this process may leada1 to a
situation where it may get stuck in a sub-optimal coalition.The
mutation strategy of the CFNDA could resolve this problem
by allowinga1 to move towards more beneficial coalitions and
thereby increase its payoff.

Using Proposition 1 we now prove that the coalition forma-
tion algorithm guarantees maximum average expected payoff
in any scale-free random graph.

Theorem 1. For any random scale-free graph G with n nodes
and (sufficiently) high penalty (α > temptation payoff), the
coalition formation process converges into a single coalition
and maximizes the average expected payoff, if the minimum
node-degree (mind), penalty (α), reward (R) and punishment
(P) payoffs fulfill the following condition:

mind ≥
4α

R+ P

Proof:
According to Proposition 1, it is sufficient to prove that

in scale-free random graphs either a node has earned the
maximum payoff (when all of its neighbors belong to the same
coalition) or one-half of its payoff is larger than the penalty
to move to another coalition leading towards the convergence
into a single coalition that maximizes its payoff.

In any random scale-free graph, there are few high-degree
nodes linked by many low-degree neighbors. Since initially
the nodes interact based on randomly assigned strategies, the
interaction partners of any node would be a uniform mixture
of cooperators and defectors. This leads the high-degree nodes
to generate high accumulated payoffs in their neighborhood.
Therefore, most or all of the neighbors of the high-degree



nodes form coalitions with them resulting all (or almost all)-
cooperation sub-graphs around the high-degree nodes.

Let us assume thata2 and a3 are two high-degree nodes
in a1’s neighborhood and that initially in the first round of
the gamea1 has formed a coalition witha2. Also assume that
the degree ofa3 is larger than the degree ofa2, i.e., d(a3) >
d(a2). Therefore the number of cooperating coalition members
of a3 should be larger than that ofa2. This would increase the
payoff of a3. Hence, in the next round of the gamea1 finds
it profitable to leave the coalition ofa2 and join the coalition
of a3 and thereby increase its payoff if

∑
u(a1)/2 > α. Now

we will prove that this condition is always satisfied until the
entire network converges into a single coalition where no node
has any motivation to leave the coalition.

Let us assume that in the first round of the game when
a1 belonged toa2’s coalition, x number of neighbors ofa1
cooperates with it (including the nodea2) and the remaining
nodes of its neighborhood (which is at least, minimum degree
of a1 ormind(a1)−x) belong to different coalitions and hence
are defectors. Therefore, after the end of the first round, the
accumulated payoff ofa1 would be

∑
u(a1) = x ∗R+ (mind(a1)− x) ∗ P

Now, in the next round, fora1 to move toa3’s coalition
for maximizing it’s payoff,a1 needs to satisfy the following
condition

x ∗R+ (mind(a1)− x) ∗ P

2
> α

We know thatα > R > P , hence for the above condition
to be satisfied, bothx andmind(a1) have to be sufficiently
large. Since initially there were equal number of cooperators
and defectors, it is expected that at least half ofa1’s neighbors
would belong to the same coalition. Therefore,

mind(a1)
2 ∗R+ (mind(a1)−

mind(a1)
2 ) ∗ P

2
≥ α

=⇒ mind(a1)
4 ∗ (R+ P ) ≥ α

=⇒ mind(a1) ≥
4α

R+P

Therefore, if the minimum node-degree of G fulfills the
above condition, the agents would tend towards beneficial
coalitions, thereby increasing the number of cooperators in
their neighborhood, until all the agents converge into a single
coalition in which mutual cooperation guarantees the maxi-
mization of the average expected payoff of the agents.

IV. COMPUTATIONAL MODEL AND RESULTSANALYSIS

Our goal here is threefold: (a) computationally validate our
approach by showing that if the penalty is set according to the
condition provided in Theorem 1, convergence into optimal
coalitions is possible, (b) show that the performance of our
approach for the emergence of cooperation in highly connected
SF networks is better than two state-of-the-art approachesand

(c) determine the topological insights that agents could use to
choose their partners such that the resulting network facilitates
cooperation.

For comparison, specifically we use two state-of-the-art
action update rules, namely theimitate-best-neighbor (IB)[4]
and the stochastic imitate-random-neighbor (SA)[19], that
has been shown to facilitate the evolution of cooperation
on SF networks [6]. We study the performance of these
rules over varying-degree SF networks. Although these two
approaches do not use coalition formation for the evolution
of cooperation, we study these to underscore the challenge
of achieving cooperation in highly connected networks. We
use a computational model to conduct extensive simulations
for our coalition formation approach by varying the node
degree-heterogeneity and the clustering coefficient of theBA
and the extended BA model. We increase the value of the
initial attractiveness parameter (A) in order to vary the degree-
heterogeneity of the network and increase the value of the
clustering probabilityp (used in the extended BA model) to
generate medium (p = 0.5) and high-clustering (p = 0.1)
networks respectively; and observe the state of convergence of
the coalitions. Also we investigate how the average expected
payoff increases in each type of network instantiation. Hetero-
geneity is measured by the standard deviation of the degree
distribution.

A. Simulation Setup

Our network consists of5000 agents represented as nodes
in the SF network. A link between two nodes of the network
indicates that the agents interact and play the PD game. We
set the default minimum node degree as 10 in both models
(m = 10).

We assign the following values for the payoffs: T = 5, R
= 3, P = 1 and S = 0. According to Theorem 1, the value
of the penalty (α) is set to 10. We choose the value of the
management cost (β) as 0.005.

All the results reported are averages over 100 realizations
for each network for different values of the network parameters
(e.g., degree-heterogeneity, clustering coefficient etc.). Each
simulation consists of 500 time steps where a time step refers
to a single run of the program. The mutation rate is set to
0.05.

TABLE II
IB & SA RULES: THE AVERAGE NO. OF COOPERATORS(#COOP) AND

AVERAGE EXPECTED PAYOFF(EXPOFF) OVER 100 REALIZATIONS OF THE

NETWORK FOR VARIOUS VALUES OF THE MINIMUM NODE DEGREE. BOTH

P AND A ARE ZERO.

IB SA
Min-
Degree

#Coop ExPoff #Coop ExPoff

1 1337.1 -75.49 1238.28 -78.37
2 2824.55 -31.43 2304.17 -47.41
3 400.81 -111.80 506.15 -108.04
5 0.0 -124.77 49.9 -123.53
10 0.0 -125.31 0.0 -124.92



B. Simulation Results

Evolution of Cooperation vs. Minimum Node Degree:
We study the effect of IB and SA action update rules over the
final fraction of cooperators by varying the minimum node
degree of the network. We use the BA model (p = 0.0)
with the initial attractiveness parameter A set to 0. Table II
shows that the evolution of cooperation occurs only when the
network is sparse. The average number of cooperators drops
to zero for both update rules when the minimum node degree
exceeds 5. This also results in very low average expected
payoff of the network. However, from Table III we observe that
our proposed commitment-based dynamic coalition formation
approach is able to increase mutual cooperation by converging
into a single coalition and to maximize the average expected
payoff of the agents in highly connected networks (when
minimum node degree is 10).

Convergence of the Network:To observe the performance
of our coalition formation approach over a low-clustering SF
network, we set the initial attractiveness parameter A = 0.
Then we gradually increase the value of A from 0 to 10,000.
From Table III we observe that as A increases, the degree-
heterogeneity of the network decreases and the likelihood
of convergence into a single coalition increases. Therefore,
clearly the agents should benefit by selecting their partners by
setting a large value of A during the network formation phase
(Procedure I in Section III). It guarantees the convergenceinto
a single coalition and maximizes the average expected payoff.
The average global clustering coefficient of the network is very
small, as expected from the standard BA network.

We use the extended BA model to investigate the effect of
high clustering and degree-heterogeneity over the emergence
of a single coalition. For both medium-clustering (p = 0.5)
and high-clustering (p = 1.0) networks we increase the initial
attractiveness parameter A from 0 to 10,000. From Table III we
notice that in the medium-clustering network, very large value
of A (> 1000) does not necessarily improve the convergence.
We get the best convergence when A = 500. Hence our
expectations about improving the convergence by controlling
the value of A are partially met by the results. On the other
hand, in the high-clustering model, very large value of A
(> 5000) is required to improve the convergence. In the high-
clustering model we see that even a very large value of A
does not decrease the degree-heterogeneity of the network
significantly. The reason is that according to the extended
model of the BA network withp = 1.0, only the selection
of the first neighbor can be controlled by the parameter A.

Average Expected Payoff:Figure 1 shows how the average
expected payoff varies over the iterations for 3 network types:
low-clustering (p = 0.0), medium-clustering (p = 0.5) and high-
clustering (p = 1.0). We set the value of A to 0 in these
models. We notice that in all these three types of networks the
average expected payoff increases and becomes stable at an
optimum value. We also notice that irrespective of the network
clustering our commitment-based dynamic coalition formation
approach improves the average expected payoff of the network

Fig. 1. BA & Extended BA Model: Increase of average expected payoff for
various values of the clustering probabilityp

and increases it in a similar fashion.

Discussion: The performance of the commitment-based
approach depends on how the value of the penalty is set.
The challenge is to determine an appropriate range of the
penalty that is high enough to incentivize an opponent (larger
than the temptation payoff) but not very high to obstruct the
process of convergence into a single coalition. According to
the required and sufficient condition in Theorem 1, for a highly
connected network with minimum node degree 10 (average
node degree 20), this value should be no greater than 10.
Using this value we are able to guarantee the convergence. We
experimented with different values of the node degree and the
penalty (the result is not reported here) and obtained similar
result. Therefore, unlike the existing approaches (IB and SA),
our approach is able to evolve cooperation and maximize the
average expected payoff both in sparser and highly connected
networks.

We are able to fine-tune the performance of our approach
by enabling the agents to control the topological features (such
as degree-heterogeneity and clustering) during the network
formation phase. The agents in a MAS choose their interaction
partners according to the preferential attachment rule of the
BA model. In the extended BA model, a fraction of the nodes
(depending on the clustering probabilityp) form the links ac-
cording to this rule. In order to guarantee optimal convergence
of our approach, agents during the network formation phase
need to choose their interaction partners using a large value of
the parameter A. This decreases the node degree-heterogeneity
and thereby reduces the number of large multiple coalitions
that otherwise may lead towards converging into sub-optimal
coalitions.

We notice that the average expected payoff in the highly-
clustered network (p = 1.0) is not as high as in both the low
and medium clustered networks. In highly-clustered network,
a node is connected to its neighbor’s neighbors. Therefore,the
shared management costs across every agent’s neighborhood
are relatively high compared to low-clustering networks. This
indicates that agent’s partner selection strategy and the network
formation affect the overall social benefit.



TABLE III
BA & E XTENDED BA M ODEL: THE AVERAGE NO. OF COALITIONS (#COA), AVERAGE EXPECTED PAYOFF(EXPOFF), AVERAGE GLOBAL CLUSTERING

COEFFICIENT (GCC) AND AVERAGE DEGREE-HETEROGENEITY(DH) OVER 100 REALIZATIONS OF THE NETWORK FOR VARIOUS VALUES OFp AND A.

BA Model Extended BA Model
p = 0.0 p = 0.5 p = 1.0

A #Coa ExPoff GCC DH #Coa ExPoff GCC DH #Coa ExPoff GCC DH
0 1.44 20.21 0.02 52.58 1.51 20.74 0.13 52.25 1.96 16.46 0.31 52.35
50 1.18 21.76 0.01 27.54 2.93 19.60 0.12 34.25 3.66 14.64 0.41 50.65
100 1.14 21.74 0.01 25.57 1.08 21.73 0.12 31.43 1.87 20.83 0.42 52.07
500 1.01 21.98 0.01 23.96 1.01 22.08 0.12 29.54 3.61 15.85 0.45 49.21
1000 1.04 21.80 0.01 23.73 1.10 21.56 0.11 29.19 2.99 17.86 0.45 49.42
2000 1.03 21.93 0.01 23.58 1.15 20.62 0.12 29.14 3.11 15.96 0.44 50.07
5000 1.01 21.89 0.01 23.50 1.25 20.28 0.12 28.83 1.89 20.38 0.45 50.23
10000 1.00 21.97 0.01 23.48 1.19 21.09 0.11 28.99 1.93 20.45 0.46 50.53

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we describe a commitment-based dynamic
coalition formation approach to establish mutual cooperation
in a large MAS operating on SF networks. We capture the
interactions of the self-interested agents with their immediate
neighbors using an iterated PD game. Unlike many previ-
ous works that assume given pre-established networks, our
agents dynamically choose their interaction partners to form
the network. Agents offer a commitment to their wealthiest
neighbors in order to form coalitions. A commitment proposal,
that includes a high penalty for breaching the commitment,
incentivizes opponent agents to form coalitions inside which
they mutually cooperate and thereby increase their payoff.Our
main findings are as follows:

• We have analytically determined, and experimentally
substantiated, how the value of the penalty should be set
with respect to the minimum node degree and the payoff
values such that convergence into optimal coalitions is
possible.

• Our approach is a contribution to the state-of-the-art
as it is able to evolve cooperation in highly connected
networks.

• Also our work is novel in that our agents are capable
of controlling some topological features of the network
that results in better convergence and increased average
expected payoff.

In future we plan to extend our model for incomplete
information games where agents do not know their neighbors
payoff.
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