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Abstract—In this paper, our goal is to achieve the emergence “tit-for-tat” strategy facilitates cooperation [5]. Hower, in
of cooperation in self-interested agent societies operating on MAS, repeated interaction does not guarantee the evolofion

highly connected scale-free networks. The novelty of this work cooperation [6]. Moreover, high connectivity among the emd
is that agents are able to control topological features during resylts in less cooperation [7].

the network formation phase. We propose a commitment-based . . . .
dynamic coalition formation approach that result in a single In this paper, our primary goal is to facilitate the emergenc

coalition where agents mutually cooperate. Agents play an iter- Of cooperation in large MAS operating on scale-free (SF)
ated Prisoner's Dilemma game with their immediate neighbors Networks where such cooperation helps maximize the global
and offer commitments to their wealthiest neighbors in order utility of the MAS. We consider the agents in the SF networks
to form coalitions. A commitment proposal, that includes a have high connectivity and play an iterated PD game with
high breaching penalty, incentivizes opponent agents to form their immediate neighbors. To achieve this goal we proose

coalitions within which they mutually cooperate and thereby commitment-based dynamic coalition formation approach

increase their payoff. We have analytically determined, and tpat leverages the complex network dynamics
experimentally substantiated, how the value of the penalty should

be set with respect to the minimum node degree and the payoff Dynamic Coalition Formation: Coalition formation pro-
values such that convergence into optimal coalitions is possible.vides a mechanism for promoting cooperation in complex
Using a computational model, we determine an appropriate networks [8], [2]. A coalition is defined as a group of agents
partner selection strategy for the agents that results in a netwk  who have decided to cooperate in order to perform a common
facilitating the convergence into a single coalition and thereby tagk. By increasing the organizational level through cimes,
maximizing average expected payofi. cooperation can be enhanced and maintained. Our primary
Index Terms—Scale-free network, emergence, complex network ¢nripution in this paper is a dynamic coalition formation
dynamics, multiagent coalition, commitment. approach that is based on commitment between agents. A
commitment is a promise that an agent offers to another agent
|. INTRODUCTION in order to influence that agent’s strategy. An agent makes us

There has been a great deal of interest in the multiagéitcommitments to exploit the strength of its own strategic
systems (MAS) community about the emergence and maing&Sition [9]. It has been shown in [1] that commitment can be
nance of cooperation among artificial agents [1], [2]. One §f€d to foster cooperation among self-interested agentsrin
the challenging questions addressed in these works is tgrdedtérated PD game. Typically a commitment proposal includes
autonomous systems in which agents work together to achiévéenalty to ensure that the breach of commitment would
common shared goals. For example, in an emergency disa&gstlt in incurring a cost [1]. We enable the self-interdste
management scenario cooperation among the agents in 3¢ rational agents to offer commitments to their wealthy
MAS is required to perform joint tasks [3]. The heterogerseot€ighbors with whom they intend to form coalitions. The agen
agents in this scenario are driven by their own local goal$at offers a commitment bears the cost of maintaining the
Therefore, it is important to establish cooperative betravico@lition and promises to pay a penalty should it decide to
with regard to a global goal for maximizing reward. Ieavg the cogl!tmn.. The penalty thresholq is set such that i

Traditionally the tension between personal and social gd¥iovides sufficient incentive to an otherwise non-coopezat
is modeled by the Prisoner's Dilemma (PD) game in whicheighbor agent to form coalition and thereby cooperate. An
the only dominant strategy equilibrium is defection whicggent moves into a different coalition with better sociaidfe
is not pareto efficient [4]. The PD game offers a powerfdf it iS capable of paying the penalty.
metaphor for understanding the challenges of the emergencén a networked interaction scenario, the challenge is to
of cooperation in the face of myopic selfish behavior. In PRletermine a penalty that facilitates the convergence into a
selfish and rational agents try to maximize their utility ghi single coalition and at the same time is high enough to
interacting with each other. When the PD game is playédcentivize the opponents to form coalitions. We analyfyca
repeatedly among two agents, it has been shown that #t®w how the penalty could be set based on the minimum



number of immediate neighbors or minimum node degreenstrained to stay in a coalition until the goals of the itioal
of the SF network and the payoffs; and provide a sufficieare accomplished. While these works emphasize the design
condition that requires to be fulfilled in order for optimabf negotiation protocols and efficient task distributionyr o
coalitions to emerge. goal is to promote cooperation at the network level. Our
Complex Network Dynamics: Our secondary contribution commitment based approach also differs significantly frben t
in this work is that we investigate the effect of the comexisting research works in this area that address the issue o
plex network dynamics over the commitment-based dynanfarmalization and implementation of commitment mecharsism
coalition formation approach. It has been shown previously MAS interactions [14].
that although defection is the dominant strategy in thexitest Our approach is inspired from [1] in which the use of com-
PD game [6], the likelihood of cooperation is remarkably inmitment is shown to facilitate the emergence of cooperation
creased if the agent interaction is constrained by the lyidgr a population of agents that play non-iterated PD game. In [1]
network topology [10], [11]. However, in these approaches variant of the PD payoff matrix is defined to incorporate
agents neither form the network nor use the network dynamite penalty and commitment management cost and thereby
to enhance the emergence phenomenon. These works startobgrovide sufficient incentives for the agents to considher t
assuming a pre-established static complex network phatfoadvantage of mutual cooperation. Their work is based on
and then employ agents on the nodes of the network for mutaal unstructured population with random interactions among
interactions. In our work, instead of assuming a given ndtwothe agents that use a social learning model and mutation for
we enable the agents form the network by choosing theirstrategy adaptation. However, they did not consider theceff
interaction partners We determine the topological insightsof their approach in iterated PD game and the role of network
that, when embedded into agent partner selection stratepology.
result in a network always leading towards the emergence of a [2] and [8] use a single coalition emergence approach
stable single coalition. In order to gain the topologicaights to achieve full cooperation in complex networks. [2] uses
for network formation, we develop a computational model aral tax collection and information sharing model that require
study how our dynamic coalition formation algorithm perfir multi-hop communication with high overhead while [8] uses
on various types of SF networks by varying the minimurma centralized voting method to decide the strategy of the
node-degree, degree-heterogeneity and the clusterinij-coeoalition members.
cient. Specifically, we investigate how a dynamical proadss A work close to our network formation approach is done
a network, namely the coalition formation, is influenced tsy iby [15] that study the emergence of cooperation using a
structural properties. network growth model based on an evolutionary preferential
To summarize, in this paper we emphasize the significanagachment algorithm. This work provides a useful undecsta
of employing “network thinking” by the agents to control the ing about how the microscopic dynamics could lead to the
dynamics and the dynamical processes of the netwbhks coevolution of the structure and the macroscopic behavior o
work advances the state of the art by (i) developing a the SF network. However, the emergencefudf cooperation
commitment-based dynamic coalition formation approach, seems to be impossible if the payoff for the temptation to
(i) by providing an analytical study about how an effective defect is larger than the payoff for the reward.
commitment mechanism is related to the topology of the A parallel thread of research involves studies by physicist
network and (ii) by determining the topological insights foo  on the issue of cooperative behavior among selfish agents
the agents to choose their interaction partners to form a over complex networks in the framework of evolutionary game
dynamically growing SF network that enhances the overall theory. [10] shows that the growth and preferential attastim
cooperation with maximized average expected utility rule of the SF network significantly enhance the cooperative
The remainder of this paper is organized as following. Weehavior. [11] studies the impact of average degree on the
first discuss the relevant literature in section Il followky outcome of the PD game played over SF, small-world and
a description of the two network models for studying theandom networks. The effect of high clustering to enhance
dynamical properties of the SF network. Then we present czmoperation over the SF network has been studied in [16].
commitment-based coalition formation approach in sedfion ~ The above research, conducted by eclectic disciplines, em-
We provide an extensive computational study in section Iphasize the fact that addressing the topological issuesrof ¢
and finally conclude with a summary of our observations arpdex networks for enhancing the cooperation is as impodant
discussion of future work in section V. formulating appropriate interaction strategies for therds.

Il. RELATED WORKS A. Network Models

The dynamic coalition formation approach in this paper In the context of social systems and in many real world
is suitable for large networks. It differs from the existingpplications we observe that the network exhibits both
coalition/team formation approaches in the MAS researclode degree-heterogeneity and high clustering. The stdnda
community that require the agents to consider all other isgeBarabasi-Albert (BA) SF network model [17], however, stsfe
in the network making the process computationally intialeta from low clustering. Moreover, the heterogeneous degree-
for large networks [12], [13]. Moreover, their agents ardistribution of the BA model is fixed by the constant power law



scaling-exponent. Hence, to emulate more realistic samarto form the network by choosing their interaction partners
we consider the following two SF network models that we ustynamically. The adjacent agents (within single-hop distg

to build a computational model for studying the performancae defined as theeighbors Every agent is equipped to play a
of our approach and to gain insights about the impact @fpersoniterated PD game with each one of its neighbors and
topological features over the process of coalition emeargen their interactions are represented by the network linkse Th
BA Model agents start playing the PD game after the network is formed

The BA SF model [17] is formed as follows: and we consider the final network as a closed system.

(i) Growth: Starting fromm, nodes, at every time step a Agenti’s payoff is denoted by:(4, j) which agent obtains
new node is added witm (m <= mg) edges which connect by playing a PD game with its neighbgrAfter every round of
between the new node and different previously existing the game, the payoff received by playing the PD game with
nodes. the neighbors gets accumulated and the accumulated payoff

(ii) Preferential Attachment: A node i is chosen to is defined aszz.”:l u(i,7), wherej refers to the neighbors
be connected to the new node according to the probabilty ;. We assume that agents know the accumulated payoff
IL..;= % wherek; is the degree of nodeandA is  of their neighbors. Every agent has a fixed strategy for each
a tunable parameterepresenting the initial attractiveness opne of its neighbors, which is either to cooperate (C) or to
each node. defect (D). In a2-personPD game setting these two strategies
Extended BA Model intersect at four possible outcomes represented by desina

The extended model [18] follows the growing process dfayoffs: R (reward) and P (punishment) are the payoffs for
the BA model that starts withny nodes. At every time step mutual cooperation and defection, respectively, whereas S
a new nodei is added to the network and gets connecte@ucker) and T (temptation) are the payoffs for cooperation
with m (m <= my) of the previously existent nodes. Theby one player and defection by the other. The payoff matrix is
first link of nodei is added to nodg of the network (with represented by Table I. For the PD game, the payoffs satisfy
j < i) following the preferential attachment rule of the BAthe conditionT > R > P > S and for iterated PD’'s we
model. The remaining: — 1 links are added in two different requireT’ + S < 2R.
ways: (a) with clustering probabilityp the new nodei is
added to a randomly chosen neighbor of ngdand (b)
with probability (1 — p) node i gets connected to one of

TABLE |
PAYOFF MATRIX FOR THE PRISONER S DILEMMA GAME

the previously existing node using the preferential attaeht c D
rule again. This procedure ensures a degree distribution of ClRR)| (ST)
p(k) ~ p~7 with a tunable clustering coefficient. DLAS) | PP
I1l. COMMITMENT BASED COALITION FORMATION The iterated PD game proceeds in rounds and each round
In this section, we present the formal model for our prdias three phases: (i) the agents play the game with all the
posed coalition formation approach. neighbors using fixed strategies and compute the accurdulate
payoff, (i) based on the payoff information of the neigh-
A. Model borhood, the agents form/join coalition and (iii) update th

The agent interactions in the MAS are specified by &girategies used in the coalition formation algorithm.
undirected graphG(V, E) where V is the set of vertices We define two types of agents: independent agents and
(or nodes) andE C V x V is the set of edges. Eachcoalition member agents. These two types are mutually
node corresponds to an agéntThe numbers of nodes areexclusive. Initially all the agents are assumed to be in-
referred byn. Once the graph or the network is formed by thédependent./nd(v;) refers to a set of independent agents
agents it becomes fixed. Two nodesandv; are neighbors ¢ : v1,v2,....... ,Un. AN agent v; makes a commitment
if (v;,v;) € E. The neighborhoodV (i) is the set of nodes Comm/(v;,v;) to its neighbor agent; and forms a coalition
adjacent tov;. That is, N(i) = {v;|(vi,v;)} € E C V and Coa(v;,v;). A coalition member agent is committed to the
|N(7)| is the degree of node;. coalition; it always cooperates with its neighbors beloggio

The graph follows scale-free property in which the distrithe same coalition and defects with others. In other words, w
bution of node degree follows a power-laNy « d~7, where implement the strategyno cooperation without commitment
N, is the number of nodes of degréend- is a constant. We However, an independent agent takes the interaction gjrate
have described the scale-free graph models in detail inosectthat the majority of its neighbors adopted in the previous
Il. round. We define the coalition formation process and the

Our proposed decentralized coalition formation approaétgorithm in the next sub-section.
requires the agents to communicate only with their immediat
neighborhood to form coalitions. We assume that agents @e Definitions, Algorithm and Theorem

self-interested and rational. To initialize, we enable dgents L ) _
Definition 1. Commitment: An agent; makes a commitment

1Throughout the paper, we use agent and node interchangeably Comm(v;,v;) to its largest accumulated payoff neighbor



Procedure 1: NetworkFormation
Require: mg initial nodes

with whom it intends to form a coalition. The commitment

proposal includes the following: Require: number of edges (m) of the newly
1) v; would bear a small management cgsto maintain connected nodem < mo
the coalition 1. setlnitialAttractiveness() = A;
L . 2. setClusteringProbability() = p;
2) v; would pay a penaltyy if it unilaterally breaks the 3.  implementBAModel;
coalition and vice versa 4. WHILE(m < mo)
5. {linkToNode(): TT,, ,; = s~ roameci~:}
Definition 2. Coalition Formation: If the accumulated payoff 6. end: ! ’
of an independent agent; € Ind(v;) is smaller than the 7 implementExtendedBAModel;

. . . . . A+degree; .
accumulated payoff of its neighbar, whose payoff is the 8. linkToNode():TT,—; = s (ATdegree;’
largest inv;’s neighborhood, i. e., it~ u(v;) < 3" u(v;) and 9. WHILE(m <mo—1) N

E th f litionC! ith b 10. {linkToNeighborOfNode(i)withProbability(p);
(vi,v;) € E, theny; forms a coalitionCoa(v;, v;) with v; by 11.  linkToNode(i)withProbability(p-1):

making a commitmer@'omm(v;,v;) as defined in Definition I, = %}
j J

1. Agentv; cooperates with the members of the same coalition 12. end:
and defects with others belonging to it's neighborhood.
As in [1], t_he management cost is very small compared to Procedure 2: InitialCoalitionFormation
the reward, i. .8 << R and the penaltyy is larger than Require: Accumulated payoff is transparent
the temptation payoff, i. eq > T in order to offer enough only to immediate neighbors
incentive to an opponent to form a coalition. Require: All the agents are Independent

Initially there would be multiple coalitions where agents L. networkFormation();

.. . . .. L. o, 2. randomStrategySelection();
may find it profltaple to Iegve their _e_X|st|ng coglltlons anmjl 3. playPDGamewithNeighbors():
new ones. We define the inter-coalition dynamics as follgwin 4.  FOR each ageni:=1to n
. . . 5. IF maximumPayoffNeighbog) AND
Definition 3. Inter-Coalition Dynamics: If the accumulated 6.  payoffg) < payoff()
payoff of a coalition agent; is smaller than the accumulated 7. offerCommitmentTgy);
: : ] " 8. formCoalitionWithg);
payoff of its ne_lghborvj that t_)elongs_to another c_oaI|t|0r1, o payManagementCostay(
whose payoff is the largest in;’s neighborhood, i. e., if 10. ELSE
Yu(vi) < X ulvj), (vi,v;) € E and Coa(v;) # Coa(v;), 11 remainindependentAgei)t(

12. END FOR

thenv; leaves its existing coalition and joins the coalition of
v; if the following condition is fulfilled:

% > o of the new noderyg — 1) are added to the randomly chosen
neighbors of the first neighbor of the new node with the

Definition 4. Coalition Convergence: After repeating theprobabilityp (ine 10) or using the preferential attachment

Inter-Coalition Dynamics phase multiple times the network. e with the probabilityp-1 (line 11). By varying the value
converges into a single coalition where no agent either fingg A the degree-heterogeneity of the resultant network can
it beneficial to leave the existing coalition or to form a newe controlled andp determines the clustering level of the
one. extended BA model. Using a computational model described
in section 1V, we determine how the agents should set these
Algorithms: Our Coalition Formation with Network Dynam- two topological parameters such that the resultant network
ics Algorithm (CFNDA) has 3 steps: network formation, ialti €nhances the emergence of a single coalition when agents for
coalition formation and decentralized coalition formatide- coalitions using algorithms 2 and 3.
scribed below by procedures 1, 2 and 3 respectively. Initial Coalition Formation: Procedure 2 depicts how
Network Formation: In the beginning agents choose theimitial coalitions are formed at the beginning of the game.
interaction partners and form the network as described Hvery agent starts out as an independent agent and there is no
Procedure 1. Agents are enabled to set the values of thigdd inicoalition. Agents choose their interaction strategy ramigo
attractiveness parameter (A) and the clustering protalfp). and generate the payoff according to the payoff matrix in
Agents may either form the network according to the BAable | by playing a2-personPD game with each one of
model (lines 3-6) or may use the extended BA model (linés neighbors (lines 2-3). Then in lines 5-9, for every agént
7-12). In the BA model, all the linksnf) of the new node the largest payoff neighboj's accumulated payoff is larger
are connected to the existing nodes using the preferentisdn the agent’s payoff, it offers commitment toj and
attachment rule (line 5). On the other hand, in the extendémms a coalition. It also bears the management cost of that
BA model only the first link of the new node is added usingoalition. An agent without any coalition members remains
the preferential attachment rule (line 8). The remainimdi independent (line 11). After the first round, there would be



Procgdure 3: Decentralized Cpalmon Formation Algorithm as are the neighbors af, . Assume that after the first round of
Require: Accumulated payoff is transparent only

to immediate neighbors thg game, the a_lccumulated payoff of is the largest im;’s

1. initialCoalitionFormation(); neighborhood, i. .3 u(az) > > u(az) > Y u(ar). Now

2. playPDGamewithNeighbors(); according to the CFNDA, ageiat will form a coalition with

3. FOR each ageni:=1ton as by making a commitment and will start cooperating with
4. IF coaliionAgent() AND the same coalition members in its neighborhood. This mutual
5. maximumPayoffNeighbosf AND . . , o .

6 cooperation may increasg’s payoff. However, it is possible
7
8

payoff) < payoff(j)

IF (notindependentAgent)) that a; was a defector with its other neighbors; in that case
: IF u(i)/2 > its payoff would not increase after joining’s coalition.
ib {gfrf‘ecrg;_’pg‘;'g?é””‘w? Now, in the next round of the game, after joining the

. joi iti ; . . . , .

11 payManagementCostByk; coalition |f_ _the majorlty of ay’s nglghbors belong to the
12.  ELSE IF (independentAgen) same coalition, its payoff further increases through mlutua
13. GOTO lines 9-11; cooperation. With this increased payaff will eventually
14. IF (coalitionAgentf) AND attract its non-coalition neighbors to join’s coalition. This
15. disconnectedFromCoalitiah( would result in a maximum payoff af;. On the other hand,
16. {becomelndependentAgei); if th .. fa. ighbor d bel . lti
17.  IF (independentAgeni)) if t e majority o a's neighbor do not belong to its coalition
18. GOTO lines 5-13; and if one of the neighbors’ payoff happens to be larger than
19.  mutation(); that of a;’s payoff, thena; will leave its existing coalition
20. END FOR and will form/join that neighbor’s coalition i§_ u(a1)/2 > «

condition is satisfied. In the new coalitiom,'s payoff is
expected to increase further because its coalition paisrtae

multiple coalitions. The number of coalitions will depend o Wealthiest ina;’s neighborhood and thereby it would attract
the size of the network more agents to join its coalition increasing the likelihoamfid

Decentralized Coalition Formation: At the beginning of mutual cooperation. However, this process may leado a

every round each agent plays the PD game and employs 'élati.on where it may get stuck in a sub-optimal coglitl‘ﬁhe
coalition strategies to join/leave/switch or form a caatit mutation strategy of the CFNDA could resolve this problem

according to Procedure 3. In lines 4-11 every coalition mermbbr?/ aIIgW|_nga1 to ”_‘0"9 towf?rds more beneficial coalitions and
agent: joins the coalition of it's largest payoff neighbgrif thereby increase its payoft.

one-half ofi’s payoff is larger than the penalty. Agenbffers i . . .
a commitment toj and bears the management cost of the Using Proposition 1 we now prove that the coalition forma-

coalition. If j is an independent agent, theforms a coalition 10N algorithm guarantees maximum average expected payoff
with it by offering a commitment and bearing the managemem any scale-free random graph.
cost (lines 12-13). If agentis a coalition member agent but iSThegrem 1. For any random scale-free graph G with n nodes
disconnected from its cqalmon members (when an agenF dooﬁ'?d (sufficiently) high penaltya( > temptation payoff), the
not hf’;\v_e any Qne-hop link tc_> other members pf Its Cc.)z.i."tlo'gbalition formation process converges into a single caaiit
then it is considered to be disconnected from its coalitié@n) o . .

and maximizes the average expected payoff, if the minimum

becomes an independent agent (lines 15-16). Howevelisif , .
an independent agent then it forms a new coalition accordiggde'degreemmd)' penalty (), reward (R) and punishment

to lines 5-13. ) payoffs fulfill the following condition:
Mutation: It is possible that some agents might become , 4o
stable within sub-optimal coalitions where the majoritytioé ming 2 5 =

neighbors do not belong to the agent’s coalition. In order Proof:
to allow these agents to move to optimal coalitions (which . . o -

o . According to Proposition 1, it is sufficient to prove that
maximizes their payoff), they are enabled to explore the

strategy space with a small probability. If the majority of ek scale-free random graphs either a node has earned the

coalition-agent’s neighbors are not its coalition memp#rat maximum payoff (when all of its neighbors belong to the same

agent becomes independent if one-half of its pavoff is karn coalition) or one-half of its payoff is larger than the pepal
thgan the penalty P pay g% move to another coalition leading towards the convergenc

into a single coalition that maximizes its payoff.

Proposition 1. For any connected graph G with n nodes and !n any random scale-free graph, there are few high-degree

(sufficiently) high penaltyo > temptation payoff), the agemsnodes Iinkc_ad by many low-degree neighbprs. Since initially
increase their payoff through the coalition formation pess. Fhe nod.es interact based on randomly aSS|gneq stratelgtes, t
interaction partners of any node would be a uniform mixture

Proof: of cooperators and defectors. This leads the high-degréesno
Let us consider three agenis, a> andas are playing an to generate high accumulated payoffs in their neighborhood
iterated PD game with their immediate neighbors. Bettand Therefore, most or all of the neighbors of the high-degree



nodes form coalitions with them resulting all (or almosd-all (c) determine the topological insights that agents coukltos
cooperation sub-graphs around the high-degree nodes.  choose their partners such that the resulting networkifaigb

Let us assume that, and a3 are two high-degree nodescooperation.
in a1’s neighborhood and that initially in the first round of For comparison, specifically we use two state-of-the-art
the gamen; has formed a coalition with,. Also assume that action update rules, namely timaitate-best-neighbor (IB]
the degree ofi3 is larger than the degree af, i.e.,d(as) > and thestochastic imitate-random-neighbor (Sf)9], that
d(az). Therefore the number of cooperating coalition membehss been shown to facilitate the evolution of cooperation
of a3 should be larger than that ef. This would increase the on SF networks [6]. We study the performance of these
payoff of az. Hence, in the next round of the game finds rules over varying-degree SF networks. Although these two
it profitable to leave the coalition af, and join the coalition approaches do not use coalition formation for the evolution
of az and thereby increase its payofff u(a;)/2 > «. Now of cooperation, we study these to underscore the challenge
we will prove that this condition is always satisfied untieth of achieving cooperation in highly connected networks. We
entire network converges into a single coalition where ndenouse a computational model to conduct extensive simulations
has any motivation to leave the coalition. for our coalition formation approach by varying the node

Let us assume that in the first round of the game whelegree-heterogeneity and the clustering coefficient ofBihe
a1 belonged toas’s coalition, z number of neighbors ofi; and the extended BA model. We increase the value of the
cooperates with it (including the node) and the remaining initial attractiveness parameter (A) in order to vary thgrde-
nodes of its neighborhood (which is at least, minimum degréeterogeneity of the network and increase the value of the
of a; orming(ay1)—2x) belong to different coalitions and henceclustering probabilityp (used in the extended BA model) to
are defectors. Therefore, after the end of the first rounel, thenerate mediump(= 0.5) and high-clusteringy( = 0.1)

accumulated payoff ofi; would be networks respectively; and observe the state of conveegehc
the coalitions. Also we investigate how the average expecte
> u(ay) =z % R+ (mina(ay) — x) x P payoff increases in each type of network instantiation et
. , . geneity is measured by the standard deviation of the degree
Now, in the next round, for; to move toas’s coalition distribution
for maximizing it's payoff,a; needs to satisfy the following '
condition A. Simulation Setup
z* R+ (ming(a1) —x) * P Our network consists 05000 agents represented as nodes
2 > a in the SF network. A link between two nodes of the network

We know thate > R > P, hence for the above conditionindicates that the agents interact and play the PD game. We
to be satisfied, both: and ming(a;) have to be sufficiently S€t the default minimum node degree as 10 in both models
large. Since initially there were equal number of coopegato(’”? = 10). _
and defectors, it is expected that at least half 06 neighbors ~ We assign the following values for the payoffs: T = 5, R

would belong to the same coalition. Therefore, =3, P=1and S = 0. According to Theorem 1, the value
of the penalty ¢) is set to 10. We choose the value of the

. . management cospf as 0.005.
mzn;(al) « R+ (mind(al) o mznd(al)) £ P g 6I

2 >a All the results reported are averages over 100 realizations

2 B for each network for different values of the network parasmet

mina(as) ((_e.g., d_egree-he_:terogeneity_, clustering coefficignt).etﬁch
= 1= x(R+tP)>a simulation consists of 500 time steps where a time stepgefer
= ming(a1) > % to a single run of the program. The mutation rate is set to

Therefore, if the minimum node-degree of G fulfills the) 5.
above condition, the agents would tend towards beneficial
coalitions, thereby increasing the number of cooperators i

thelr_ ljelg_hborh_ood, until all the age_nts converge into glsin AVERAGE EXPECTED PAYOFHEXPOFF) OVER 100 REALIZATIONS OF THE
coalition in which mutual cooperation guarantees the MaXigrwork FOR VARIOUS VALUES OF THE MINIMUM NODE DEGREEBOTH

TABLE ||
IB & SA RULES: THE AVERAGE NO. OF COOPERATORY#COOP) AND

mization of the average expected payoff of the agents. P AND A ARE ZERO.
[ ]
1B SA

IV. COMPUTATIONAL MODEL AND RESULTSANALYSIS Min- #Coop | ExPoff #Coop | ExPoff

Our goal here is threefold: (a) computationally validate ou ?egree 13371 | -75.49 123808 | 78.37
approach by showing that if the penalty is set according ¢o th 2 282455 | -31.43 2304.17 | -47.41
condition provided in Theorem 1, convergence into optimal 3 400.81 | -111.80 | 506.15 | -108.04
coalitions is possible, (b) show that the performance of our S 0.0 -124.77 | 49.9 -123.53
approach for the emergence of cooperation in highly comaiect 10 0.0 -12531 | 0.0 -124.92

SF networks is better than two state-of-the-art approaahds
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Evolution of Cooperation vs. Minimum Node Degree:
We study the effect of IB and SA action update rules over th
final fraction of cooperators by varying the minimum node
degree of the network. We use the BA model £ 0.0)
with the initial attractiveness parameter A set to 0. Talble |
shows that the evolution of cooperation occurs only when th
network is sparse. The average number of cooperators dro
to zero for both update rules when the minimum node degre
exceeds 5. This also results in very low average expecte
payoff of the network. However, from Table Il we observettha Time Steps
our proposed commitment-based dynamic coalition formatio
approach is able to increase mutual cooperation by comgrgFig. 1. BA & Extended BA Model: Increase of average expectagoff for
into a single coalition and to maximize the average expectefious values of the clustering probabilgty
payoff of the agents in highly connected networks (when
minimum node degree is 10).

Convergence of the Network:To observe the performance

of our coalition formation approach over a low-clustering S  pjscussion: The performance of the commitment-based
network, we set the initial attractiveness parameter A = Qpproach depends on how the value of the penalty is set.
Then we gradually increase the value of A from 0 to 10,00§he challenge is to determine an appropriate range of the
From Table Il we observe that as A increases, the degrqﬁmany that is high enough to incentivize an opponent éiarg
heterogeneity of the network decreases and the likelihog¢ghn the temptation payoff) but not very high to obstruct the
of convergence into a single coalition increases. Theeefoprocess of convergence into a single coalition. According t
clearly the agents should benefit by selecting their pasthgr the required and sufficient condition in Theorem 1, for a hyigh
setting a large value of A during the network formation phasgnnected network with minimum node degree 10 (average
(Procedure 1 in Section lll). It guarantees the convergemioe pode degree 20), this value should be no greater than 10.
a single coalition and maximizes the average expected pay@fsing this value we are able to guarantee the convergence. We
The average global clustering coefficient of the networleiyv experimented with different values of the node degree aad th
small, as expected from the standard BA network. penalty (the result is not reported here) and obtained aimil
We use the extended BA model to investigate the effect afsult. Therefore, unlike the existing approaches (IB aAj| S
high clustering and degree-heterogeneity over the emeegeaur approach is able to evolve cooperation and maximize the
of a single coalition. For both medium-clustering £ 0.5) average expected payoff both in sparser and highly conthecte
and high-clusteringg = 1.0) networks we increase the initialnetworks.
attractiveness parameter A from 0 to 10,000. From Tableéllw We are able to fine-tune the performance of our approach
notice that in the medium-clustering network, very largiga by enabling the agents to control the topological featusash{
of A (> 1000) does not necessarily improve the convergencgs degree-heterogeneity and clustering) during the n&twor
We get the best convergence when A = 500. Hence olgirmation phase. The agents in a MAS choose their intemactio
expectations about improving the convergence by commlli partners according to the preferential attachment rulehef t
the value of A are partially met by the results. On the oth@A model. In the extended BA model, a fraction of the nodes
hand, in the high-clustering model, very large value of fdepending on the clustering probabilipy form the links ac-
(> 5000) is required to improve the convergence. In the higleording to this rule. In order to guarantee optimal convecge
clustering model we see that even a very large value of df our approach, agents during the network formation phase
does not decrease the degree-heterogeneity of the netwiaskd to choose their interaction partners using a large\afiu
significantly. The reason is that according to the extend@ge parameter A. This decreases the node degree-heteitygene
model of the BA network withp = 1.0, only the selection and thereby reduces the number of large multiple coalitions
of the first neighbor can be controlled by the parameter A.that otherwise may lead towards converging into sub-optima
Average Expected PayoffFigure 1 shows how the averagecoalitions.
expected payoff varies over the iterations for 3 networletyp  We notice that the average expected payoff in the highly-
low-clustering p = 0.0), medium-clusteringa(= 0.5) and high- clustered networkpg = 1.0) is not as high as in both the low
clustering p = 1.0). We set the value of A to 0 in theseand medium clustered networks. In highly-clustered nekwor
models. We notice that in all these three types of networks th node is connected to its neighbor’s neighbors. Therefoee,
average expected payoff increases and becomes stable astered management costs across every agent’s neighborhood
optimum value. We also notice that irrespective of the netwoare relatively high compared to low-clustering networkkisT
clustering our commitment-based dynamic coalition foiorat indicates that agent’s partner selection strategy andetveank
approach improves the average expected payoff of the nketwéormation affect the overall social benefit.
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and increases it in a similar fashion.



TABLE Il
BA & EXTENDED BA MODEL: THE AVERAGE NO. OF COALITIONS (#COA), AVERAGE EXPECTED PAYOFH EXPOFF), AVERAGE GLOBAL CLUSTERING
COEFFICIENT(GCC)AND AVERAGE DEGREEHETEROGENEITY(DH) OVER 100REALIZATIONS OF THE NETWORK FOR VARIOUS VALUES OR AND A.

BA Model Extended BA Model
p=0.0 p=05 p=1.0

A #Coa ExPoff GCC DH #Coa ExPoff GCC DH #Coa ExPoff GCC DH

0 1.44 20.21 0.02 5258 | 1.51 20.74 0.13 52.25 | 1.96 16.46 0.31 52.35
50 1.18 21.76 0.01 2754 | 2.93 19.60 0.12 34.25 | 3.66 14.64 0.41 50.65
100 | 1.14 21.74 0.01 2557 | 1.08 21.73 0.12 31.43 | 1.87 20.83 0.42 52.07
500 | 1.01 21.98 0.01 2396 | 1.01 22.08 0.12 2954 | 3.61 15.85 0.45 49.21
1000| 1.04 21.80 0.01 2373 | 1.10 21.56 0.11 29.19 | 2.99 17.86 0.45 49.42
2000| 1.03 21.93 0.01 2358 | 1.15 20.62 0.12 29.14 | 3.11 15.96 0.44 50.07
5000| 1.01 21.89 0.01 2350 | 1.25 20.28 0.12 28.83 | 1.89 20.38 0.45 50.23
10000 1.00 21.97 0.01 2348 | 1.19 21.09 0.11 28.99 | 1.93 20.45 0.46 50.53
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