
Meta-level Reasoning in Deliberative Agents

Anita Raja
Department of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223

anraja@uncc.edu

Victor Lesser
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003
lesser@cs.umass.edu

Abstract

Deliberative agents operating in open environments must
make complex real-time decisions on scheduling and coor-
dination of domain activities. These decisions are made in
the context of limited resources and uncertainty about the
outcomes of activities. We describe a reinforcement learn-
ing based approach for efficient meta-level reasoning. Em-
pirical results showing the effectiveness of meta-level rea-
soning in a complex domain are provided.

1. Introduction

Open environments are dynamic and uncertain. Complex
agents operating in these environments must reason about
their local problem-solving actions, coordinate with other
agents to complete tasks requiring joint effort, determine a
course of action and carry it out. These deliberations may
involve computation and delays waiting for arrival of ap-
propriate information. They have to be done in the face of
limited resources, uncertainty about action outcomes and in
real-time. Furthermore, new tasks can be generated by ex-
isting or new agents at any time. These tasks have deadlines
where completing the task after the deadline could lead to
lower or no utility. This requires meta-level control that in-
terleaves an agent’s deliberation with execution of its do-
main activities.

How does an agent efficiently trade off the use of its lim-
ited resources between deliberations about which domain
actions to execute and the execution of these domain ac-
tions that are the result of previous deliberative actions?
This is the meta-level control problem for agents operat-
ing in resource-bounded multi-agent environments. The de-
liberative actions studied here are scheduling and coordina-
tion. We enumerate various options for achieving these de-
liberative actions. In this paper, meta-level control uses a
model of the environment and deliberation choices of the
agent to determine the behavior of the deliberation level.

The deliberation choices vary in their performance charac-
teristics. The advantage of explicit meta-level control is de-
termined by the environment characteristics, available de-
liberation choices and cost of meta-level control activities.

We show that in a fairly complex domain where there
is dynamic decision making on tasks, it is advantageous to
have meta-level control with bounded computational over-
head and this meta-level control can be dynamically con-
structed via a reinforcement learning process. We also show
that learning meta-level control policies is computationally
feasible through the use of a domain-independent abstract
representation of the agent state. This abstraction concisely
captures critical information necessary for decision making
while bounding the cost of meta-level control.

There has been previous work on meta-level con-
trol [2, 4, 8] but there is little that is directly related to the
meta-level control problem of deliberative multi-agent sys-
tems. Hansen and Zilberstein [3] extend previous work
on meta-level control of anytime algorithms by us-
ing a non-myopic stopping rule. It can recognize whether
or not monitoring is cost-effective, and when it is, it
can adjust the frequency of monitoring to optimize util-
ity. This work has significant overlap with the founda-
tions of the meta-level control reasoning framework de-
scribed here. /citehansen96monitoring deals with the
single meta-level question of monitoring, considers the se-
quential effects of choosing to monitor at each point in
time and keeps the meta-level control cost low by using a
lookup-table for the policy. This work has some of its foun-
dations in Russell and Wefald [7] in that we too do not in-
sist on optimal control for all reasoning. Our analysis is for
a multi-agent environment while their work focused on sin-
gle agent decisions.

The meta-level control work described in this paper is
applied to domains that have the following additional com-
plexities: The tasks of the multi-agent system are distributed
among the member agents by an external task allocator.
Each agent is assigned a set of tasks that are handled ex-
clusively by that agent. The goal is to maximize the util-

ity obtained by the multi-agent system which is the sum of
the utilities of the tasks completed by all the agents. The
agents are capable of pursuing multiple tasks (goals) con-
currently. Some tasks require multiple-agents to coordinate
their activities such as one agent doing a subtask for an-
other agent. Each task is represented using a hierarchical
task network (HTN) formulation, has its own deadline and
an associated utility that is accrued when the task is com-
pleted. The task network describes one or more of the pos-
sible ways that the task could be achieved. These alterna-
tive ways are expressed as an abstraction hierarchy whose
leaves are basic action instantiations. These primitive ac-
tion instantiations are called domain actions. Domain ac-
tions can be scheduled and executed and are characterized
by their expected quality and duration distributions.

The paper is structured as follows: We first describe the
meta-level reasoning process using abstract representation
of the system state. We then present the empirical reinforce-
ment learning algorithm used for meta-level control. Fi-
nally, we present a performance evaluation comparing the
the policies obtained by reinforcement learning to hand-
generated heuristic strategies and conclude with a discus-
sion.

2. Meta-Level Control

Meta-level control (MLC) is the process of optimizing an
agent’s performance by choosing and sequencing domain
and deliberative activities. There can be various options for
performing each of these activities and these options vary in
their performance characteristics. For instance, the simple
option for scheduling uses pre-computed information about
the task to select the appropriate schedule which fits the cri-
teria. This will support reactive control for highly time con-
strained situations. The complex option is a soft real-time
process of finding an execution path through a hierarchi-
cal task network such that the resultant schedule meets cer-
tain design criteria, such as real-time deadlines, cost limits,
and utility preferences [11]. When certain exogenous or in-
ternal events occur, meta-level control determines the best
context sensitive activity choice.

The following are events that occur in our domain which
require meta-level control. Each such event has an associ-
ated decision tree. The set of possible action choices corre-
sponding to each event is also described.

Arrival of a new task: When a new task arrives at
the agent, the meta-level control component has to de-
cide whether to reason about it later; drop the task com-
pletely; or to do scheduling-related reasoning about an
incoming task at arrival time and if so, what type of
scheduling - complex or simple. The decision tree de-
scribing the various action choices named A1-A11 is
shown in Figure 1. Scheduling actions have associ-

ated utilities and also costs with respect to scheduling
time and decommit costs of previously established com-
mitments if the previous schedule is significantly re-
vised or completely dropped. These costs are diminished
or avoided completely if scheduling a new task is post-
poned to a later convenient time or completely avoided
if the task is dropped. The meta-level controller can de-
cide that it does not have enough information to make a
good decision and will consequently choose to spend more
time in collecting features which will help with the deci-
sion making process[A6].

New task

arrives

Use detailed scheduler

Get new

features

on all tasks including
partially executed tasks

Use simple scheduler

Drop task

on new task

Drop task

[A2]

[A1]

[A3]

[A4]

[A5]

[A6]

[A9]

[A8]

on new task

Add new task
to agenda

Add task to agenda

Use detailed scheduler Legend

state

 transition
function

 executable
 action

 external
event

on new task
Use simple scheduler

Use detailed scheduler
on new task

Use detailed scheduler
on all tasks including
partially executed tasks

[A7]

[A10]

[A11]

Figure 1. Decision tree when a new task ar-
rives

Invocation of the detailed scheduler: The parameters to
the scheduler are scheduling effort, earliest start time and
slack amount. Their values are determined based on the
current state of the system including characteristics of the
existing schedule and the set of new tasks that are being
scheduled. The scheduling effort parameter determines the
amount of computational effort that should be invested by
the scheduler. The parameter can be set to either HIGH,
where a high number of alternative schedules are produced
and examined or LOW, where pruning occurs at a very early
stage and hence few alternative schedules are compared, re-
ducing the computational effort while compromising the ac-
curacy of the schedule. The earliest start time parameter de-
termines the earliest starting time for the schedule to begin
execution. This parameter is offset by the sum of the time
needed to complete any primitive executions whose execu-
tion has been interrupted by the meta-level control action
and the time spent on scheduling the new task(s). The slack
parameter determines the amount of flexibility available in
the schedule so that unexpected events can be handled by
the agent without it detrimentally affecting its expected per-
formance characteristics.

The other events that are reasoned about by the MLC are
When to initiate negotiation with another agent, Whether
to renegotiate if a coordination event fails and Whether

to reschedule when performance is below expectation. De-
tailed descriptions are provided in [5].

The MLC in making its decisions does not directly use
the information contained in the agent’s current state. This
would include detailed information regarding the tasks that
are not yet scheduled, status of tasks that are partially ex-
ecuted, and the schedule of primitive actions that are to be
executed. Instead the MLC uses a set of high-level quali-
tative features that are computed from the full state infor-
mation and pre-computed information about the behavior
of the tasks that the system can handle. The advantage of
this approach is that it simplifies the decision making pro-
cess and provides the possibility for automatically learning
these rules. The following are the features of the high-level
state used by the meta-level controller. Most of the features
take on qualitative values such as high, medium and low.

F1: Utility goodness of new task: It describes the util-
ity of a newly arrived task based on whether the new task is
very valuable, moderately valuable or not valuable in rela-
tion to other tasks being performed by the agent.

F2: Deadline tightness of a new task: It describes the
tightness of the deadline of a particular task in relation to
expected deadlines of other tasks. It determines whether the
deadline of the new task is very close, moderately close or
far in the future.

F3: Utility goodness of current schedule: It describes
the utility of the current schedule normalized by the sched-
ule length and is based on information provided by the
scheduler.

F4: Deadline tightness of current schedule: It de-
scribes the deadline tightness of the current schedule in re-
lation to expected deadlines of tasks in that environment. If
there are multiple tasks with varying deadlines in the sched-
ule, the average tightness of their deadlines is computed.

F5: Arrival of a valuable new task: It provides the
probability of a high utility, tight deadline task arriving in
the near future by using information on the task character-
istics like task type, frequency of arrival and tightness of
deadline.

F6: Amount of slack in local schedule: It provides a
quick evaluation of the flexibility in the local schedule.
Availability of slack means the agent can deal with unan-
ticipated events easily without doing a reschedule. The cost
of inserting slack is that the available time in the schedule
is not all being used to execute domain actions.

F7: Deviation from expected performance: It uses ex-
pected performance characteristics of the schedule and the
current amount of slack (F6) to determine by how much ac-
tual performance is deviating from expected performance.

F8: Decommitment Cost for a task: This estimates the
cost of decommiting from doing a method/task by consid-
ering the local and non-local down-stream effects of such a
decommit.

F9: Amount of slack in other agent’s schedule: This
is used to make a quick evaluation of the flexibility in the
other agent’s schedule if coordination is required.

F10: Relation of slack fragments in local schedule to
new task: This determines the feasibility of fitting a new
task given the detailed fragmentation of slack in a particular
schedule and involves resolving detailed timing and place-
ment issues.

F11: Relation of slack fragments in non-local agent
to new task: This determines the feasibility of fitting a new
task given the detailed fragmentation of slack in a particu-
lar non-local schedule.

We will now describe some of the low-level parameters
that determine the high-level features of the system state us-
ing a simple example. A typical task is composed of sub-
tasks and primitive actions. Primitive actions can be sched-
uled and executed and are characterized by their expected
utility and duration distributions. These distributions are
statistical domain knowledge available to the agent. For in-
stance, the utility distribution of a method if described as���������	��
���������

, indicates that it achieves a utility value
of 30 with probability 0.1 and utility of 45 with probabil-
ity 0.9.

A multi-agent system M is a collection of n heteroge-
neous agents. Each agent � has a finite set of tasks � which
arrive in a finite interval of time. ����� is the total num-
ber of tasks that have arrived at the system from the start
to current time ��� . Let ����� upon arrival has an arrival
time ����� and a deadline "!#� associated with it. A task �
can be achieved by one of various alternative ways (plans)
�%$	&'�%$)(�*+&'�%$)(-,	./.0./&'�'1 . A plan �2$ to achieve task � is a sequence
of executable primitive actions �2$436587 * &)7 , &9./.0./&'7;:=< .
Each plan �%$ has an associated utility distribution >? �A@ and
duration distribution " � @ .

Example: Suppose agent � is one of the agents in the
multi-agent system. Agent � at time 44 is executing ac-
tion 7 which is on its schedule. Suppose the expected util-
ity goodness (defined below) of the tasks remaining on the
schedule is 0.454 with BDCE GFH>IB deadline.

Task � � arrives at time 45 and has a deadline of 100. The
execution of method 7 is interrupted by the arrival event
and 7 still needs about 8 time units to complete execution.
� �8J and � ��K are two alternate ways to achieve task � �

where
>? � *'L 3 �������M�	�N
	���OH�	�

 " � *)L 3 �QP	���RP	PS�	���R�+�NP	�������	���

>? � *)T 3 �QP����RP+�?U+���O�����

 " � *)T 3 �Q�	���R��P��	���O��NP+�H�O��	�

Suppose ��� � is the time required for scheduling a task �
if it is chosen for scheduling. V?W is the remaining time re-
quired for primitive action 7 to complete execution. Then
the earliest start time C�XY�Z� for a task � is the arrival time

����� of the task delayed by the sum of V W , the time required
for completing the execution of the action 7 which is inter-
rupted by a meta-level control event and ��� � , the time re-
quired for scheduling the new task.

C�X � � 3 �S� � � V�W � ��� �
Example: Suppose the time to schedule a task like � � is

5 units on average. ��� � and V�W are 45 and 8 respectively.
Then C�XY� � * 3

���
.

The maximum available duration BD � for a task � is the
difference between the deadline of the task and its earliest
start time.

BD �� 3 G! ��� C�XY���
Example:

BD �� * 3
�8�	� � ��� 3 HP

Given a task � and its maximum available duration BD � ,
the probability that a plan �2$ meets its deadline �I G! �A@ is
the sum of the probabilities of all values in the duration dis-
tribution of plan �2$ which are less than the maximum avail-
able duration of the task.

�I "! � @ 3 :�
$	� *

$�8�	��� �)�
 $ �� $ � � " � @ ��� �� $�� BD � �

Example: Since BD � * 3
�P

, there is only one duration
value in " � *'L which has a value less than 42 and that
value is 22 and occurs 25% of the time.

�I G! � *'L 3
P	�
�8��� 3 � . P	�

There are two duration values in " � *)T which have a
value less than 42 and they are 32 and 40 which occur 50%
and 30% respectively in the distribution.

�I "! � *'T 3
�+� � �	�
�8��� 3 � . �

The expected duration C� �A@ of a plan �2$, is the expected
duration of all values in the duration distribution of plan � $
which are less than the maximum available duration for the
task.

CE � @ 3�� :$	��*�� @*������ $�I G! �A@ � �'�
 $ �� $ � �Z " � @ ��� �� $�� BD � �

Example:

CE � *)L 3
� ,��*���� � P�PS�� . P	� 3 P	P

CE � * T 3
� ���*���� � ��P � ! �*"�	� � ����� . � 3 ���

The expected utility C�> �A@ of a plan �%$, is the product of
the probability that the alternative meets its deadline and the

expected utility of all values in the utility distribution of al-
ternative �%$.

C > � @ 3
:�
$	��* �I "! � @ �

$���	� � $ � �)�
 $ �� $ � �#>I � @ �

Example:

C > � *)L 3
� . P�� �

�8�
�8�	� � ��� � � . P�� �

	�
�8�	� � H� 3 �8� . �HU+�

C > � *)T 3
� . � �

P	�
�8�	� � P	� � � . � �

U	�
���	� � �	� 3 P	P

Given the maximum available duration for a task, the
preferred alternative �N! � � for a task � is the alternative
whose expected utility to expected duration ratio is the high-
est. �S! � � is the alternative which has the potential obtain
the maximum utility in minimum duration within the given
deadline.

�N! � � 3 � $ � :#%$�&
$	� * C > � @CE �A@

Example: Consider each of � � ’s alternative plans which
were described earlier. Plan � ��J ’s expected utility to ex-
pected duration ratio is *��(')�*	�,), 3 � . �
+ and plan � ��K ’s
expected utility to expected duration ratio is , ,! � 3 � . + P+
 .
So the alternative with the maximum expected utility to ex-
pected duration ratio is � ��K

�N! �Z� * 3 �
� K

The utility goodness > ,I� of a task � is the measure
which determines how good the expected utility to expected
duration ratio of the preferred alternative of a task is in rela-
tion to the expected utility to expected duration ratio of the
preferred alternatives of all the other tasks which arrive at
the system.

The tasks with high utility are the tasks which are in
the 66th percentile (top 1/3rd) of the expected utility to ex-
pected duration ratio of the preferred alternative of a task.

>I � 3

-./ .021 F3, 1 &5476 L98;:=<4?> L98;: <5@ +A++��B
DCFE;GHCFI ��J�K C
BDC� "FH>EBR& 476 L98;: <4�> L98;: <5@ ��� E;LM
DCFE;GHCFI ��J�K C
!MNPO &	Q ��B CFESR J"T C

Example: The utility goodness of task � � given a dead-
line of 100 and a maximum available duration of 42 is
,),! � 3 � . + P�� which lies above the 66th percentile. > ,�� * 31 F9, 1 . The deadline tightness for this example was com-
puted in a similar fashion and found to be �SF9, 1 � . The
utility goodness of � � is higher than the current scheduled
tasks whose utility goodness is only 0.454 and BDCE "F >IB
deadline. Hence, Task � � has higher priority.

The other features mentioned earlier are determined in
a similar principled fashion. Based on these features and a
decision process, agent � determines that the best action

would be to complete method 7 , drop the current sched-
ule, detailed schedule � � which means the agent should
complete the current method in execution (this is required
to maintain consistency of the simulation), then discard the
current schedule and reinvoke the scheduler.

We have constructed a number of decision processes
based on these features. The most interesting one is based
on learning and is described in the next section.

3. Learning a Meta-level Control Policy

We formulate the meta-level control problem in terms of
a finite state Markov decision process [1] (MDP) with dis-
counted return. The MDP state is the factored, abstract de-
scription of the state features presented in the previous sec-
tion. Control actions define the action space of the MDP and
reward is the utility accrued when a high level task is com-
pleted. We use a learning approach based on [9] where the
probability transitions and reward function for the MDP can
be generated when there is a restricted set of training data.
Since we account for real-time control costs, each of our
simulation runs takes approximately four minutes and this
makes collecting training data a bottle neck.

To implement this approach, we first construct an initial
meta-level control policy which randomly chooses an action
at each state and collects a set of episodes from a sample
of the environment. Each episode is a sequence of alternat-
ing states, actions and rewards. As described in [9], we esti-
mated transition probabilities of the form � � T�� � T�&�� � , which
denotes the probability of a transition to state T�� , given that
the system was in state T and took action � from many such
sequences. The transition probability estimate is the ratio
of the number of times in all the episodes, that the system
was in T and took � and arrived at T�� to the number of times
in all the episodes, that the system was in T and took � ir-
respective of the next state. The Markov decision process
(MDP) model representing system behavior for a particu-
lar environment is obtained from state set, action set, tran-
sition probabilities and reward function. In the interest of
space, we refer the reader to [6] for further details. The ef-
ficiency of the model depends on the extent of exploration
performed in the training data with respect to the chosen
states and actions. In the final step we determine the opti-
mal policy in the estimated MDP using the Q-value version
of the standard value iteration algorithm [10].

To the extent that the estimated MDP is an accurate
model of the particular environment, this optimized pol-
icy should maximize the reward obtained in future episodes.
The algorithm is as follows:

1. Choose an appropriate reward measure for episodes
and an appropriate representation for episode states.

2. Build an initial state-based training system that creates
an exploratory data set. Despite being exploratory, this
system should provide the desired basic functionality.

3. Use these training episodes to build an empirical MDP
model on the state space.

4. Compute the optimal meta-level control policy accord-
ing to this MDP.

5. Reimplement the system using the learned meta-level
control policy

4. Experiments

The agents in this domain are in a cooperative environ-
ment and have approximate models of the others agents in
the multi-agent system. The agents are willing to reveal in-
formation to enable the multi-agent system to perform bet-
ter as a whole. The interaction between 2 agents is studied.
The multi-agent aspect of the problem arises when there is
task requiring coordination with another agent. The agent
rewards in this domain are neither totally positively corre-
lated (team problem) nor are they totally negatively corre-
lated (zero-sum game) but rather is a combination of both.

The meta-level control decisions that are considered in
the multi-agent set up are: when to accept, delay or reject
a new task, how much effort to put into scheduling when
reasoning about a new task, whether to reschedule when
actual execution performance deviates from expected per-
formance, whether to negotiate with another agent about a
non-local task and whether to renegotiate if a previous ne-
gotiation falls through. For all the experiments, the follow-
ing costs are assumed. The meta-level control actions have
an associated cost of 1 time unit; the drop task and delay
task actions take 1 time unit also. The decision to negoti-
ate and whether to renegotiate also take 1 unit of time. The
call to simple scheduler costs 2 time units and the cost of
computation of complex features costs 2 time units, the cost
of detailed scheduling tasks with less than five methods is 4
units, with less than ten methods is 12 time units and greater
than ten methods is 18 time units.

The task environment generator in the multi-agent setup
also randomly creates task networks while varying three
critical factors:
complexity of tasks ���
	���������������
������������� �"!#��$%���&�'�(�*)'�+��,-�/.
frequency of arrival 0��1	(2354+26��78�����*�"9��:3�;��<=�������(>���?��/.
tightness of deadline 9��@�
	"A&�4+2+A�� BC���D�*�E9��:F�G��<H���������I�"����?J�/. .
Complexity of tasks as described earlier refers to the ex-
pected utilities of tasks and the number of alternative paths
available to complete the task. A simple task, in the multi-
agent setup, has two to four primitive actions. A simple task
has an average duration 18 time units and a complex task
has an average duration of 25 time units. A complex task
has four to six primitive actions.

The frequency of arrival of tasks refers to the number of

tasks that arrive within a finite time horizon. The resource
contention among the tasks increases as the task frequency
increases. Task arrival is determined by a normal distribu-
tion with � 3 P��+�

and � 3 P �

. When the frequency of ar-

rival is low, about one to ten tasks arrive at the agent in 500
time unit horizon; medium implies between ten and fifteen
tasks; and high implies between fifteen and twenty tasks.
The tightness of deadline refers to the parameter defined in
the previous section and it is task specific. The resource con-
tention is also proportional to the deadline tightness. If the
deadline tightness is set to low, the maximum available du-
ration given to the task is between 120% and 150% of the
expected duration of the task; medium, the maximum avail-
able duration is between 100% and 120% of the expected
duration of the task; and if high, the maximum available du-
ration is between 80% and 100% of the expected duration
of the task.

An environment named AMM has a combination(A)
of simple and complex tasks arriving at a medium fre-
quency(M) and with medium tightness of deadline(M).

We first tested the effectiveness of meta-level control
using the two hand-generated context sensitive heuristic
strategies NHS and SHS. The myopic strategy, NHS, uses
state-dependent heuristics based on high-level features to
decide which deliberative (also called control) decision to
make. These heuristics are myopic and do not reason ex-
plicitly about the arrival of tasks in the near future. A sample
NHS heuristic used to make a decision when a new task ar-
rives would be “If new task has high priority; current sched-
ule has low utility goodness, then best action is drop its cur-
rent schedule and schedule the new task immediately inde-
pendent of the schedule’s deadline.”

The non-myopic strategy, SHS, is a set of rules that use
knowledge about environment characteristics to make non-
myopic decisions. The knowledge of the task arrival model
enables the SHS to make decisions that in the long term
minimize the resources spent on redundant deliberative ac-
tions. An example SHS heuristic is “If new task has very
low utility goodness, loose deadline; low probability of a
high priority tasks arriving in the near future, then best ac-
tion is schedule new task using simple scheduling.”

The complete list of NHS and SHS heuristic rules and
their descriptions can be found in [5] (Chapter 4). The fea-
tures presented in Section 2 were selected based on what in-
tuitively made sense for meta-level control. We use the fol-
lowing experiments based on the heuristic rules to verify
the usefulness of these features. NHS and SHS were com-
pared to base-line approaches which used a random and de-
terministic strategy respectively.

Performance comparison of the various strategies in en-
vironment AMM, over a number of dimensions and aver-
aged over 300 test episodes are described in Table 1. Col-
umn 1 is row number; Column 2 describes the various com-

Row# SHS NHS Deter. Rand.

1 AUG 111.44 89.84 77.56 45.56
2 � 2.33 6.54 12.45 15.43
3 CT 9.21% 8.09% 14.28% 7.15%
4 RES 0% 14.28% 19.93% 1.49%
5 PTC 71.32% 56.34% 54.17% 57.78%
6 PTDEL 8.8% 3.98% 0% 59.96%

Table 1. Performance evaluation of four algo-
rithms for two agents in an environment AMM

parison criteria; Columns 3-6 represent each of the four
algorithms; Rows 1 and 2 show the average utility gain
(AUG) and respective standard deviations (�) per run; Row
3 shows the percentage of the total 500 units spent on de-
liberative/control actions(CT); Row 4 is the percentage of
tasks rescheduled (RES); Row 5 is the percent of total tasks
completed (PTC);Row 6 is percent of tasks delayed on ar-
rival (PTDEL). The results show that the combined utili-
ties of the two agents when using the heuristic strategies
is significantly higher than the combined utilities when us-
ing the deterministic and random strategies. The utility ob-
tained from using SHS is significantly higher (p � 0.05)
than NHS and also 14% more tasks are completed using
SHS than the NHS. The reason for the improved perfor-
mance by the heuristic strategies is explained by compar-
isons of the percent of control time over the same set of
environments. As described earlier, control actions do not
have associated utility of their own. Domain actions pro-
duce utility upon successful execution and the control ac-
tions serve as facilitators in choosing the best domain ac-
tions given the agent’s state information. So resources such
as time spent directly on control actions do not directly pro-
duce utility. When excessive amounts of resources are spent
on control actions, the agent’s utility is reduced since re-
sources are bounded and are not available for utility pro-
ducing domain actions. The trend in other factors such as
percent of reschedules, tasks completed and delayed tasks
are also affected by the resources spent on control actions.

The heuristic strategies use control activities that opti-
mize their use of available resources (time in this case). The
deterministic strategy has higher control costs because it al-
ways makes the same control choice (due to the absence
of explicit meta-level control), the expensive call to the de-
tailed scheduler, independent of context. The random strat-
egy has low control costs but it does not reason about its
choices leading to bad overall performance.

Experimental results describing the behavior of the two
interacting agents in 3 environments AMM, AML and ALM
averaged over 300 test episodes are presented in Table 2
where Column 1 is the environment type; Column 2 repre-

Environment RL-3000 SHS NHS

AMM-UTIL 118.56 111.44 89.84
AMM-CT 8.86% 9.21% 8.09%

AML-UTIL 211.45 207.88 130.68
AML-CT 22.56% 23.21% 40.89%

ALM-UTIL 136.05 113.83 92.56
ALM-CT 10.21% 13.11% 15.88%

Table 2. Utility and Control Time Comparisons
over four environments

sents the performance characteristics of the RL policy after
3000 training episodes; Column 3 and 4 represent the per-
formance characteristics of SHS and NHS respectively. De-
tails about the generation of the training episodes can be
found in [5] (Chapter 5). In these tests, one agent was fixed
to the best policy it was able to learn in a single agent envi-
ronment. The other agent then learned its meta-level control
policy within these conditions.

The results show that the combined utilities of the two
agents when using the RL strategy is as good as the SHS
strategy which uses environment characteristic information
in its decision making process. The ability of the RL algo-
rithm to make non-myopic decisions leads to optimized use
of its resources (time) and hence learn policies which signif-
icantly outperforms NHS (p � 0.05) in these environments
and does as well as if not better than SHS. There are twelve
features in the abstract representation of the state and each
feature can have one of four different values, so the maxi-
mum size of the search space is

 *�,�3 P ,�� , which is about
a million states. Of these million states, only about a 100
states on average are visited with high frequency for a spe-
cific environment. This is in interesting area of future work
where we would like to study the characteristics of the fre-
quently visited states over multiple environments.

5. Discussion

The experimental evaluation leads to the following con-
clusions: Meta-level control reasoning is advantageous
in resource-bounded agents in environments that ex-
hibit non-stationarity, action outcome uncertainty and
partial-observability; the high-level features are good indi-
cators of the agent state and facilitate effective meta-level
control; the domain independence of these high level fea-
tures allows the solution approach to be generalized to
domains where tasks have associated deadlines and util-
ities, there are alternate ways of achieving the tasks,
uncertainty in execution performance and detailed schedul-
ing and coordination of tasks may be required.

We describe a reinforcement learning approach which

equips agents to automatically learn meta-level control poli-
cies. The empirical reinforcement learning algorithm used
is a modified version of the algorithm developed by [9] for a
spoken dialog system. Both problem domains have the bot-
tle neck of collecting training data. The algorithm optimizes
the meta-level control policy based on limited training data.
The utility of this approach is demonstrated experimentally
by showing that the meta-level control policies that are au-
tomatically learned by the agent perform as well as the care-
fully hand-generated heuristic policies.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA, 1996.

[2] M. Boddy and T. Dean. Decision-theoretic deliberation
scheduling for problem solving in time-constrained environ-
ments, 1994.

[3] E. A. Hansen and S. Zilberstein. Monitoring anytime algo-
rithms. SIGART Bulletin, 7(2):28–33, 1996.

[4] E. J. Horvitz. Reasoning under varying and uncertain re-
source constraints. In National Conference on Artificial In-
telligence of the American Association for AI (AAAI-88),
pages 111–116, 1988.

[5] A. Raja. Meta-level control in multi-agent systems. PhD
Thesis, Computer Science Department, University of Mas-
sachusetts at Amherst, September 2003.

[6] A. Raja and V. Lesser. Reasoning about Coordination Costs
in Resource-Bounded Multi-Agent Systems. In In Proceed-
ings of AAAI 2004 Spring Symposium on Bridging the mul-
tiagent and multirobotic research gap, Stanford, CA, March
2004, Pages 35-40, March 2004.

[7] S. Russell and E. Wefald. Principles of metareasoning. In
Proceedings of the First International Conference on Prin-
ciples of Knowledge Representation and Reasoning, pages
400–411, 1989.

[8] S. J. Russell, D. Subramanian, and R. Parr. Provably bounded
optimal agents. In Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-93),
pages 338–344, 1993.

[9] S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker.
Empirical evaluation of a reinforcement learning spoken di-
alogue system. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence, pages 645–651, 2000.

[10] R. Sutton and A. Barto. Reinforcement Learning. MIT Press,
1998.

[11] T. Wagner, A. Garvey, and V. Lesser. Criteria-Directed
Heuristic Task Scheduling. International Journal of Approx-
imate Reasoning, Special Issue on Scheduling, 19(1-2):91–
118, 1998. A version also available as UMASS CS TR-97-
59.

