A Distributed Constraint Optimization
Algorithm for Dynamic Load Balancing in
WLANSs *

Shanjun Cheng!, Anita Rajal, Jiang(Linda) Xie?, and Ivan Howitt?

!Department of Software and Information Systems
?Department of Electrical and Computer Engineering
The University of North Carolina at Charlotte
Charlotte, NC 28223
{scheng6, anraja, jxiel, ilhowitt}@uncc.edu

Abstract. The traffic load of Wireless local area networks (WLANSs)
is often distributed unevenly among access points. In addition, interfer-
ence from collocated wireless devices operating in the same unlicensed
frequency band may cause WLANSs to become unstable, leading to tem-
porarily failures of access points. This paper addresses how to dynam-
ically balance the load and how to quickly respond to instability in
WLANSs. We propose a new decentralized load balancing framework for
WLANS based on multi-agent systems, which maps the WLAN load bal-
ancing problem into a distributed constraint optimization problem. A
distributed optimization algorithm, DLB-SDPOP, is designed to solve
this problem and dynamically balance WLAN load in a fully distributed
way. It focuses on pseudo-tree! repair instead of pseudo-tree reconstruc-
tion each time when instability problems occur. We empirically show
that the proposed distributed constraint optimization algorithms im-
prove WLAN load balancing performance significantly.

Key words: Distributed Constraint Optimization, Pseudo-tree Repair,
Multi-agent Systems

1 Introduction

Wireless local area networks (WLANs) have become one of the most popular
wireless technologies due to their low cost, simple installation, and great capa-
bility to support high speed data communications. However, research studies
on operational WLANs have shown that the traffic load is often distributed
unevenly among access points (APs) [1].

* This work is supported by the U.S. National Science Foundation (NSF) under Grant
No. CNS-0626980.

L A pseudo-tree of a graph G is a rooted tree with the same vertices as G and has the
property that adjacent vertices from the original graph fall in the same branch of
the tree [8].

In a dynamic operational environment of WLANS, interference may signif-
icantly impact the signal quality of WLANSs, and hence, impact the network
management decision-making. The ability of the system to deal with such dy-
namic changes and move from a previous stable state to a new optimal stable
state quickly is a critical issue.

In this paper, we map the WLAN load balancing issue to a distributed con-
straint optimization problem (DCOP) [7] and develop a decentralized frame-
work based on multi-agent systems. We present a Dynamic Load Balancing-
Distributed Pseudo-tree Optimization Procedure (DLB-DPOP), that is a varia-
tion of the DPOP algorithm [8] geared towards the WLAN problem. In Section
3, DLB-DPOP is shown to be complete (i.e., guaranteed to find the optimal
solution). We then develop a distributed optimization algorithm, DLB-SDPOP,
that finds initial assignments to reach steady state and uses self-stabilizing [5]
pseudo-tree repair mechanisms to dynamically maintain load balancing criteria.
The main contributions of DLB-SDPOP are (a) a self-stabilizing pseudo-tree
repair mechanism that repairs the affected nodes in the original pseudo-tree in-
stead of reconstructing the entire pseudo-tree each time a perturbation needs
to be handled. (b) It can solve complicated load balancing situations with up
to 50% agents simultaneously failing. (¢) DLB-SDPOP has the complexity of
O(dom™), where dom bounds the domain size and w =induced width along the
particular pseudo-tree chosen. The induced width is the maximum number of
parents of any node in the induced graph [3]. In the worst case, the complex-
ity converges at O(\dom*|w*), where dom* =the set of all APs in the WLAN,
w* =induced width of the whole pseudo-tree.

The rest of the paper is organized as follows. In Section 2, the WLAN load
balancing problem is described and mapped to a DCOP model. In Section 3, the
proposed DCOP algorithm is explained. A motivating example is provided to il-
lustrate the self-stabilizing mechanism in the developed DLB-SDPOP algorithm
in Section 4. The performance results of the developed algorithm are presented
in Section 5, followed by the conclusions in Section 6.

2 Problem

The goal of the WLAN load balancing problem is to dynamically assess the
associations of mobile stations (MSs) at time ¢, find the optimal set of MSs
under each AP based on the estimates of the states of the MSs at time #51,
and change the associations of specific MSs from one AP to another neighboring
AP and finish handoffs by t;4+1. The neighborhood of a certain AP is the set of
those APs with whom it has frequent interactions. We define tgeiay = tit1 — t,
as the maximum time required to handoff one MS from one AP to a neighboring
AP. We formulate the load balancing issue as an optimization problem. The
optimization satisfies the following criteria:

Criterion I: The received signal strength (RSS) of each MS associated with an
AP is above the minimum received power threshold ~. In this paper, - is set
to be -82 dBm.

Criterion II: Maximize the minimum received power by each MS in order to
minimize the likelihood of packet loss. In this paper, we implement this
criterion as: _

max min(R; (x)) (1)
i,J
where R (t;) denotes the reward of MS; being handed off to AP; at time
tr.-

Criterion III: Distribute the load amongst viable APs in order to increase
fairness as well as the overall network-wide resource utilization. In this paper,
we assume each MS has the same load to each AP and implement this
criterion as:

min{max Z | MSjNum(tk) — MSlen(tk) |} (2)
Rkl

where MSJN“’”(tk) denotes the number of MSs assigned to AP; at time ¢j.

Note that Criterion IT and III may not be met simultaneously. Therefore, it
is important to trade-off between these two criteria based on network conditions.
Under low network load, Criterion II could be given higher priority in order to
decrease the likelihood of ping-pong effect, while Criterion III could be given
higher priority when the network load is higher and load balancing is more
critical to maintain capacity availability across the network. Since the focus of
this paper is load balancing, we give Criterion III higher priority than Criterion
IL.

2.1 DCOP Model

We map the WLAN load balancing problem to a DCOP [7] model in the following
way. The model is a tuple (A, X, D, R), where

- A ={A,...,A,} is the set of agents interested in the optimal solution; in
the WLAN context, each access point AP; is assigned an agent.

- X ={Xi,...,X,,} is the set of variables; in the WLAN context, each AP;
has a variable X; for M S;, which represents the new associated AP after a
handoff.

— D ={di,...,dn} is a set of domains of the variables, where each domain d;
is a set of APs in AP;’s neighborhood.

— R ={ry,...,rp} is a set of relations where a relation r; is a utility function
which provides a measure of the value associated with a given combination
of variables. In WLAN, R represents objective functions, which are the three
criteria we defined for load balancing.

The goal of our algorithm is to find a complete instantiation X* for the variables
X; that maximizes the sum of the utilities of individual relations in the multi-
agent system, in other words, to find which AP each MS should be associated
with so that all the criteria for load balancing can be achieved.

2.2 Related Work

Distributed algorithms like DSA/DBA [11] and distributed complete algorithms
such as ADOPT [7], DPOP [8] have been proposed to solve problems modeled
as distributed constraint optimization (DCOP). These algorithms have been
applied to problems such as graph coloring and meeting scheduling. However,
there are only few attempts to address real world scenarios using this formalism,
mainly because of the complexity associated with these algorithms [6]. Choxi and
Modi [2] proposed an approach to manage WLAN connectivity by optimizing
node positioning using (static) DCOP. Among these algorithms, DPOP is a
complete algorithm based on dynamic programming. It is a utility-propagation
method that extends tree propagation algorithms to work on arbitrary topologies
using a pseudo-tree structure. It can generate only a linear number of messages.
DPOP has mostly been used in environments (sensor assignment and meeting
scheduling) where assignment decisions have to be made up front and then the
application remains mostly static.

Self stabilization in distributed systems [4] is the ability of a system re-
sponding to transient failures, eventually reaching a legal state, and maintaining
it afterwards. This makes such systems particularly interesting because they
can tolerate faults and are able to cope with dynamic environments [9]. SD-
POP [9] deals with dynamic problems, where variables and constraints can be
added/deleted at runtime. SDPOP has a scheme for fault containment and fast
response time upon low impact failures. SDPOP has been implemented to solve
the meeting scheduling problem with up to 10% of the agents having simultane-
ous perturbations.

3 Solution

We have developed a multi-agent-system (MAS) based decentralized approach
for WLAN load balancing. A distributed load balancing (DLB) agent is located
inside each AP. Each DLB agent cooperates with other DLB agents in its neigh-
borhood to ensure load balancing across the entire WLAN. A DLB agent’s neigh-
borhood consists of those DLB agents with whom it has frequent interactions.
DLB agent interaction is initiated by two event triggers: (1) a handoff event
and (2) the need for load balancing among APs. A handoff event occurs when
the RSS of one MS begins to drop below the threshold. When a certain AP
is over-loaded, some MSs associated with this AP need to be handed off to its
neighboring APs so as to increase fairness as well as the overall resource utiliza-
tion of the WLAN. These interactions include the distribution of information
and control-decisions. The DLB agent’s decision process involves determining
which MS needs to be handed off to which AP.

Upon receiving a handoff event trigger, the DLB agent in the associated AP
initiates agent interactions within its neighborhood by sending request messages
to inform its neighbors. It has the view of the pseudo-tree which is made up of
its neighborhood and itself. Similarly, The neighboring agents also have partial
views of the whole pseudo-tree separately. They send back response messages to

announce the possible new assignments based on local evaluations of the three
criteria in Section 2. The associated agent calculates the utility value of each
possible AP assignment, and runs the DLB-DPOP algorithm using the local
utility values as initial inputs. After an optimal assignment is found, the handoff
decisions are sent to the target agents.

3.1 DLB-DPOP Algorithm

The DLB-DPOP includes 3 phases:

Phase 1-DFS (Depth-First Search) Traversal: DLB-DPOP performs a
distributed depth-first traversal of the network to establish a pseudo-tree struc-
ture [3]. This is similar to the pseudo-tree creation phase in DPOP.

We have defined two heuristic functions here: Num(v) and Low(v). For each
node v, we call its preorder number Num(v). Low(v) is defined as:

Low(v) = min{ Num(v), min{ Num(w), Vback — edge(v,w)},

min{ Low(w), Vtree — edge(v,w)}} (3)

Low(v) is the minimum value of the preorder number of node v, the lowest
preorder number of node w from all the back-edges connecting node v to node
w and the lowest Low(w) from all the tree-edges connecting node v to node
w. This definition ensures that all the nodes in the same pseudo-tree “loop”
(A pseudo-tree “loop” is formed by tree-edges and back-edges as a close circle.)
are assigned the same value of Low(v). They help us efficiently represent and
identify the triggered AP when a handoff trigger happens, thus obviating the
need to traverse the DFS tree in search of the triggered AP. Building the DFS
tree takes O(|E| + |V]) time, where |E| and |V| are the number of edges and
vertices in the pseudo-tree, respectively.

Phase 2-Utility Propagation: DLB-DPOP propagates utility messages
(called UTIL messages) which contain utility vectors sent bottom-up along the
pseudo-tree starting from the leaves, only through tree edges. This step too is
similar to DPOP, except that (a) the propagation of DLB-DPOP acts only in
part of the whole pseudo-tree which is made up of the neighborhood of the
triggered DLB agent. This is because handoff changes will mostly have local
effects on the pseudo-tree, thus obviating the need for DPOP type of global
propagation of UT'IL messages. (b) the values propagated in the UT'IL messages
of DLB-DPOP are the reward values. We use the function R} (¢x) to denote the
reward of M S; being handed off to AP; at time ¢, which can be expressed as:

Rl = Ul (tr) — C (1) (4)

U/ (ty) is the normalized signal strength above the threshold of MS; from AP;
per unit time:
i Zte Pratio
Ui (ty) = ;T (5)

where Pratio = Preceive — Pihress Preceive denotes the received power (dBm) of
MS; from AP; at a certain time unit, Pij..s denotes the threshold value (If
Preceive of M S; from AP; is lower than Pipres, M.S; should be handed off to
another powerful AP so as to remain working. In our WLAN problem, P es
is set to be -82 dBm.), P4t measures how much Preceive 1S above Pipres at a
certain time unit. ¢5 and ¢, denote the earliest and last time at which the signal
goes above Pipres. CY(ty) is the estimated handoff cost function:

C .
COty) = § 7o 1 le = s > Laclay
v Cinaz Otherwise

(6)

Ch, and Cy,q, are constant values (dBm) representing the handoff cost. If the
time duration of good signal is not long enough (t. — ts < tgeiay), the handoff
decision would be unnecessary. The reward value Rg (tx) is used to reduce the
possibility of reaching myopic solutions.

Phase 3-Optimal VALUE Propagation: The optimal value assignments
are then propagated top-down from the root node [8]. The root agent chooses
the optimal assignment and sends VALUE message to its children agents (a
VALUE message represents this assignment). Each child agent determines its
optimal assignment based on the messages from Phase 2 and the VALUE mes-
sage and repeats the propagation process. When all the nodes finish choosing an
assignment, the algorithm is completed.

In order to prove that our proposed DLB-DPOP algorithm is complete, we
have to prove its correctness and liveness. We use the two heuristics Num(v)
and Low(v) to generate a pseudo-tree. Num(v) helps to sort the nodes and
Low(v) is used to distinguish all the nodes to different groups that each group
forms a pseudo-tree “loop”. Adding each node according to Num(v) and Low(v)
leads to a compatible pseudo-tree. We extend the optimality proof for DPOP
[8] to DLB-DPOP. A pseudo-tree has no cycles. This implies that all messages
come from unrelated parts of the tree and these messages are hence accurate
evaluations of the utility that can be obtained by the sub-trees belonging to each
sender node for each value of the node. The upper bound of the utility obtained
from the whole problem at a node can be accurately computed by summing
up the messages, for each possible value of the node. The value that produces
the maximum utility is then assigned to the node. This shows correctness of the
algorithm. In addition, both the absence of cycles in the pseudo-tree and the fact
that all the leaves initiate the message propagation guarantee that each node
will eventually receive m — 1 messages (with m as the number of neighbors) and
hence it will be able to send its mth message. This also means that each node
will receive a message from its last neighbor, thus terminating the algorithm.
This proves liveness. Hence, the proposed DLB-DPOP algorithm is complete.

3.2 DLB-SDPOP Algorithm

DLB-DPOP regenerates a new pseudo-tree (Phase 1) excluding the fault nodes
each time perturbations occur. It is obvious that changes in the pseudo-tree

structure will adversely affect the performance of DLB-DPOP since some of the
UTIL messages will have to be recomputed and retransmitted. Therefore, it is
desirable to maintain as much as possible the current DFS tree. In addition, in
the UTIL protocol in DLB-DPOP, upon a perturbation all UT'IL messages on
the tree-path from the fault node to the root are recomputed and retransmitted.
This is wasteful sometimes, since some of the faults have limited, localized effects,
which do not need to propagate through the whole problem.

Algorithm 1 DLB-SDPOP
1: DLB-SDPOP (X,D,R)
Each agent X; executes:

Phase 1:DFS Traversal

root < electedleader

assignNum(root)

assignLow (root)

afterwards, X; knows Num (X;) and Low (X3).

Phase 2:Self-stabilizing Utility Propagation
6: store all new UTIL messages (Xi7 UTIL{)
7: if any perturbation is detected in WLAN then
8: case 1: agent X; stops working

9: for all constraints R¥ of X; in the pseudo-tree do
10: deleteEdge (Xi, Rf)

11: delete the single agent X; from the pseudo-tree
12: case 2: agent X; resumes working

13: connect X; to existing agent X

14: send_Message (Xi, UTILZ‘)

15: for all original constraints RF of X; do

16: addEdge (Xi, R'f)

Phase 3:Optimal Value Propagation
17: X; <« v} = choose_Optimal (agent_view)
18: send VALUE! to all X; € C(X;)

END ALGORITHM

We develop DLB-SDPOP by incorporating a self-stabilizing mechanism. DLB-
SDPOP dynamically modifies/repairs the affected nodes in the original pseudo-
tree retaining the topology and states of unaffected nodes when inconsistency is
detected (e.g., one or several APs stop working for a moment or previously fault
APs resume functionalities). We define the following variables: UTIL! is the
UTIL message that X; sends to X; RE is the constraint relationship between
X; and Xy; VALUEgC is the VALU E message that X; sends to Xy; Sep(X;) is
the set of ancestors of X; in the pseudo-tree; P(X;) is the parent of X; (the single
node higher in the hierarchy of the pseudo-tree that is connected to X; directly
through a tree-edge.); C(X;) is the children of X; (the set of nodes lower in

the pseudo-tree that are connected to X; directly through tree-edges.); PP(X;)
is the pseudo-parents of X; (the set of nodes higher in the pseudo-tree that
are connected to X; directly through back-edges.); and PC(X;) is the pseudo-
children of X; (the set of nodes lower in the hierarchy of the pseudo-tree that
are connected to X; directly through back-edges.). The DLB-SDPOP algorithm
is described in Algorithm 1. It starts with a DFS traversal. After this phase,
each node is assigned Num() and Low(). The Self-stabilizing Utility Propaga-
tion process (line 6 — 16, Algorithm 1) is initialized and then run continuously.
DLB-SDPOP ends with the propagation of optimal values to each node.

Main functions in DLB-SDPOP are described in Procedure 1. The func-
tions assignNum (vertex) and assignLow(vertex) respectively generate Num(v)
and Low(v) for each node v in the pseudo-tree. In Phase 2 of DLB-SDPOP,
deleting interfered agents and adding back previous agents cleared of interfer-
ence are two main concerns. delete Edge(X;, RF) deletes a relation/constraint R¥
depending on the type of the edge (whether they are tree-edge or back-edge),
addEdge(X;, R¥) adds a new relation/constraint R¥ between two existing agents
based on their relative position (whether they are ancestor-descendant or sib-
lings).

As mentioned in Section 1, DLB-SDPOP has the complexity of O(dom™).
The variables dom and w increase with the propagation of the neighborhood size
of the whole WLAN. The increase of neighborhood size would bring in a larger
set of involved APs and a local view of pseudo-tree for each AP with more nodes,
leading to a larger domain size and an equal or larger induced width separately.

4 Motivating Example

We now describe the self-stabilizing pseudo-tree repair mechanism in DLB-
SDPOP by illustrating a motivating example in a WLAN scenario.

Static \: Access Point
-~ ™\, | O:Mobile Station

/! o \
= 2 N\
/ \\

/% ap\S . 0N o
\, 4 /N,
[X) N4 / —

\ o N 3 LT

———— T N
\

/
N AN | Q _N-
Se_ L~ N\ - =~
— NN o AT
[CoAPR AL ; \
[RN 0 [’ O /4ps
SO NISSY AN e I
ey N S AR
S ANE -V ANNAN =X /
/ \ \ \ o

[\ __,'k;gs ‘: Moving\‘“—’/

Fig. 2. Pseudo-

Fig. 1. 8-APs WLAN tree for the WLAN
scenario in Fig. 1.

scenario.

Fig. 1 is a WLAN scenario with 8 APs and several MSs. All the APs are
static. Some MSs are static and some are moving (as shown in Fig. 1). Each AP

has a coverage radius of 80 meters (shown as the dashed circles) which means the
effective distance to associate a MS is 80 meters. If two APs have overlapping
coverage areas, they are defined as neighboring APs (e.g., APs and AP, are
neighboring APs, while AP; and APs are not.). APs can only hand off MSs to
their neighboring APs.

Fig. 2 is the whole pseudo-tree generated by Phase 1(line 2 —5, Algorithm 1)
as a global view for AP5. All the neighboring APs in Fig. 1 are connected by tree-
edges (solid lines) or back-edges (dashed lines) so that they can send messages
to each other.

Static \: Access Point
~ . . .
- // ° \\ O: Mobile Station
T “ 2

\
&
1\o "~ o/ o

/
[O
Pertuitb. ti&n X \r// / \\/’__\
|:‘L,‘f> - “

AT G / O
. A Lo e
NN [/ ZZRTRRN

7o APy VT o i \
[BP0 [o syes
SN TN BN e |
/ PANT YAV A NS N /
\ 7 \ \. o /
[-—FAP5 . e
\ ! X’ | Moving TT7
N \ /// o /
TN _
Fig.4. Repaired pseudo-tree
Fig. 3. Perturbation (AP, — APy is deleted).

at APl

Suppose at time t;, a new source of perturbation causes AP to stop working
(Fig. 3). APy should be deleted (line 8 — 11, Algorithm 1) from the pseudo-
tree in Fig. 2. AP, has two neighboring agents: AP, and AP, . We first consider
removing tree-edge AP; — AP, (line 24, Procedure 1). Removing the edge AP; —
AP, does not disconnect the problem, but disrupts the structure of the pseudo-
tree (line 31 — 36, Procedure 1). The nearest ancestor of AP, and AP, in the
pseudo-tree is AP5 (line 32, Procedure 1). Thus the pseudo-tree repair begins
from AP; and proceeds as follows (line 34 — 36, Procedure 1): AP; — APy —
AP, — AP, — AP; . The result is depicted in Fig. 4. We should notice the
role changes: AP, and AP; have switched parent/child roles. The UTIL message
between AP, and AP; has to be recomputed as well as that between AP, and
AP;, while other UTIL messages can be reused. Then we consider removing
tree-edge AP, — APs (line 26 — 30, Procedure 1). AP; becomes a single node
(line 28, Procedure 1) that can be deleted directly, and AP, begins a new UTTL
propagation by re-computing its UTIL message which does not include the
previous message that sent from the sub-tree of AP; (line 30, Procedure 1).

5 Empirical Evaluation

All experiments in this section were performed using Matlab optimization tool-
box for simulation, running in an Intel Centrino Core Duo with 1.6GHz, 1G RAM

memory, under Windows XP. Values reported here are averages over at least 10
repetitions of the simulation. In the experiments, our baseline is DPOP, the ex-
isting state of the art. We show the computational advantage of DLB-SDPOP
over DPOP and effectiveness of self-stabilization in DLB-SDPOP.

5.1 Metrics for Evaluation

We evaluate the performance of DLB-SDPOP and DLB-DPOP based on the
following variables:

— # of APs - the total number of APs in the scenario.

— Neighborhood size -the number of neighboring APs of each associated AP.

— F#-changes - the number of both pseudo-tree nodes which are added and
deleted simultaneously.

— Repair-cost - the cost to reconstruct the pseudo-tree (measured by the num-
ber of messages transmitted to redefine the topology of the new pseudo-tree).

— # of MS/AP - the average number of MSs associated with each AP in the
scenario.

We compare DLB-SDPOP and DLB-DPOP by measuring the metrics Mes-
sages and Solving time when perturbation occurs. Messages is defined as the
total number of messages exchanged between DLB agents to respond to the
perturbations and stabilize in a state corresponding to the optimal solution.
Solving time is defined as the time (sec.) it takes for the DLB agent architecture
to recover from the perturbations and stabilize in an optimal solution.

5.2 Scenario Setup

For the experiments reported here, we use four different scenarios or grids with
different sizes (3 x 3,4 x 4,6 x 6 and 9 x 9). Thus the variable # of APs is
set to 9, 16, 36, and 81. Each grid in our simulation is wrapped around, i.e., if
a MS moves out of one boundary of the simulation scenario, it moves into the
scenario through the opposite boundary. The distance between APs is 80 meters.
The link quality is based on the expected received power over a transmission
distance of d;;(ty) between AP; and MS; at time ¢ given by Pr(d;;(tx)) =
Pr — (201og,q fc + 10k log, (d;j(tr)) — 28)(dBm) [10]. In our simulation, 10%
of MSs under each AP are randomly chosen to move in a random direction
with a constant speed 0.5 m/s (MSs mobility percentage = 10%). We conduct
simulation experiments with increasing Neighborhood size of 5, 9, 16 and 25.
We set the #-changes to be 1, 2, 4, 5, 8, 16 and 36 to see the trends of both
algorithms (We set the perturbation areas in the scenario randomly to influence
the functionalities of APs) and set # of MS/AP to be 5 and 30 to simulate the
scenario where each AP has few MSs and many MSs respectively. C}, = 30dBm
and Chqr = 25dBm. Fig. 5 shows the simulation scenario.

450
400 He of AP4 Algorithm |Solving time(sec. ||Meszages
250 9 DPOP 0.053 & 0.008 IB+5
200) DLB-SDPOPR 0.024 £ 0.006 7249
™ 16 DPOP 0.109 £ 0.012 | 96 £ 27
- DLE-SDPOF D.Cl'3§ +0.009 (147 +£41
. 26 DPOP 0.458 £0.037 |162£42
DLE-SDPOF| 0.041 £0.013 |253 £ 72
bt - DPOP BE22+0.122 |354 £83
< DLB-SDPOF 0.079 +0.034 p40 4+ 127
0
%o

0 50 100 150 200 250 300 350 400 450

Fig. 6. DLB-SDPOP vs. DPOP
(Neighborhood size= 5, # of

Fig.5. Simulation MS/AP=5, #-changes— 1)

Scenario.

5.3 Discussion

Fig. 6 provides the performance comparison between DPOP and DLB-SDPOP.
DLB-SDPOP performs significantly (p < 0.05) better than DPOP on Solving
time in all cases which shows the efficiency of pseudo-tree repair in DLB-SDPOP.
Meanwhile, DLB-SDPOP consumes more Messages than DPOP which mainly
occur in the VALUE and UTIL initiation processes (Phase 2, Algorithm 1).
Given the importance of fast response time to perturbations in real-time WLAN
scenarios, DLB-SDPOP is preferable.

[DLE-SDPOP |
Bl OLE-DPOP

Solving time (log)

i I II II
9 16 36 81
of APs

Fig. 7. Solving time (log scale) with variance for DLB-SDPOP and DLB-DPOP
(Neighborhood size=5, #of MS/AP=5, #-changes=4), for # of APs to be 9,16,36
and 81.

In Fig. 7, Solving time of DLB-SDPOP increases a little when # of APs
changes from 9 to 16 and decreases slowly when # of APs increases to 36 and
81. This is because the total number of MSs is getting larger when # of APs
changes from 9 to 16. The increase in Solving time (# of APs from 9 to 16)

I DLB-SDPOP

| I OLB-DFOP |
= | J J
o 0

= 10°} |
o f]
E | |
= |]
oD |

£

=107

] t]
w ‘

107 i
1 4 8 16
#-changes

Fig. 8. Solving time (log scale) with variance for DLB-SDPOP and DLB-DPOP (# of
APs=36, Neighborhood size=9, # of MS/AP=5), for #-changes to be 1,4,8 and 16.

mainly comes from the utility calculation of each MS which needs to be handed
off. However, when # of APs increases from 16 to 81, the percentage of #-
changes in the whole scenario becomes much smaller. The lower the percentage
of failing APs in the pseudo-tree, the less time it takes for the self-stabilization
algorithm to discover the fault points and recover from the inconsistent state.
Meanwhile, the time saved by running self-stabilization algorithm outweighs the
time overhead which is caused by the computation of handoffs. Combining these
two factors, it results in a slightly decrease. Solving time of DLB-DPOP increases
exponentially when # of APs increases from 9 to 81. Since DLB-DPOP does
not use a self-stabilization algorithm to modify the pseudo-tree, each time a per-
turbation occurs, DLB-DPOP reconstructs the pseudo-tree in its DF'S Traversal
Phase. DLB-SDPOP significantly outperforms (p < 0.05) DLB-DPOP by spend-
ing 21% and 0.87% of Solving time of DLB-DPOP in the WLAN with 36 and
81 APs respectively.

In Fig. 8, Solving time increases almost linearly according to #-changes for
both DLB-SDPOP and DLB-DPOP. In DLB-SDPOP, the time cost mainly
comes from the hand-off decision making process in DLB agents (including
sending and receiving communication messages among neighboring APs, utility
calculation and assignment computation). In DLB-DPOP, the time cost mainly
comes from the hand-off decision making process, the pseudo-tree reconstruction
phase and the UTIL messages and VALU E messages retransmitted through the
pseudo-tree to reach a new optimal assignment without the failing APs. Solving
time is longer in DLB-DPOP because of complete pseudo-tree reconstruction
and the associated UTTL and VALU E messages. DLB-SDPOP performs signif-
icantly (p < 0.05) better than DLB-DPOP on Solving time.

In Fig. 9(a), Solving time of DLB-SDPOP decreases a little when Neighbor-
hood size changes from 5 to 9. If Neighborhood size is too small, it takes a longer
time to convey the failure information to the entire pseudo-tree (each time one
AP can only send messages to its neighboring APs.). The self-stabilization al-

gorithm requires that each AP have an overview of the system and coordinate
with its neighbors to detect the fault. The faster it takes to convey the fail-
ure information, the faster self-stabilization takes effect. If Neighborhood size is
too large, the self-stabilization algorithm runs fast, but each message sent may
have more information, aggregated from the communication between parents
and children in the pseudo-tree. When Neighborhood size increases to 16 and
25, the recomputed and retransmitted information in the messages results in the
increase of Solving time. DLB-SDPOP responds to perturbations much more
quickly (p < 0.05) than DLB-DPOP over all Neighborhood size in this scenario.

L = = = =
10 2500,

I OLB-SDPOP
-DP - DLB-SDPOP
S CL8-0POP 2000| - DLB-DPOP

1500+

1000,
5
107: i i

Solving time (log)
Messages

=]
S

5 9 16 25
Neighborhood size Nelghborhood size
(a) Solving time (log scale) with variance (b) Messages with variance

Fig. 9. DLB-SDPOP vs. DLB-DPOP (# of APs=36, #of MS/AP=5, #-changes=8),
for Neighborhood size to be 5,9,16 and 25.

DLB-DPOP uses fewer Messages than DLB-SDPOP at each Neighborhood
size (Fig. 9(b)). The overhead comes from Repair cost of DLB-SDPOP. In the
self-stabilization algorithm, failing APs send messages to their neighboring APs
to notify the perturbations so that the neighboring APs can modify their relation
tables and get ready for pseudo-tree repair. In real-time WLAN environments,
recovering from perturbations and making hand-off decisions quickly are given
higher priority. So DLB-SDPOP performs much better than DLB-DPOP with
respect to both Messages and Solving time in this experiment setup.

6 Conclusion and Future Work

We have developed a multi-agent approach for decentralized load balancing in
WLANSs. This approach uses DLB-SDPOP, a constraint optimization algorithm
to determine the optimal allocation of MSs under each AP. Empirical evaluation
of DLB-SDPOP shows that the self-stabilizing mechanism efficiently handles up
to 50% perturbations in real-time WLAN scenarios and it outperforms DPOP
as the problem scales (up to 81 APs). However, as expected, our approach does

not perform well in tight constrained networks that have dense clustering of
heavily loaded APs. The cut-off point of our experiments that DLB-SDPOP
works successfully is a scenario where # of APs=81, Neighborhood size=25,
#-changes=36, and # of MS/AP=30.

In the future work, we plan to make some abstractions in transmitted mes-
sages to improve our algorithm. We would send tuples instead of hypercubes in
UTIL messages in order to reduce the complexity from O(dom®) to polyno-
mial. Also, We plan to extend our algorithm to handle situations making the
interference prediction probabilistic in keeping with real-world scenarios.

7 Acknowledgements

The authors would like to acknowledge Adrian Petcu and James Atlas for con-
structive suggestions.

References

1. A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan. Characterizing user
behavior and network performance in a public wireless LAN. In Proceedings of
ACM SIGMETRICS, pages 195-205, 2002.

2. H. Choxi and P. J. Modi. A distributed constraint optimization approach to wire-
less network optimization. In Proceedings of AAAIOT Workshop on Configuration,
July 2007.

3. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

4. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643-644, 1974.

5. S. Dolev. Self-stabilization. MIT Press, 2000.

6. R. Junges and A. L. C. Bazzan. Evaluating the performance of DCOP algorithms
in a real world, dynamic problem. In AAMAS (2), pages 599-606, 2008.

7. P.J.Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous distributed
constraint optimization with quality guarantees. In Al Journal, volume 161, pages
149-180, 2005.

8. A. Petcu and B. Faltings. DPOP: A scalable method for multiagent constraint
optimization. In Proceedings of International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 266271, 2005.

9. A. Petcu and B. Faltings. S-DPOP: Superstabilizing, fault-containing multiagent
combinatorial optimization. In Proceedings of the National Conference on Artificial
Intelligence (AAAI-05), pages 449-454, Pittsburgh, Pennsylvania, July 2005.

10. J. Xie, I. Howitt, and A. Raja. Framework for decentralized wireless LAN resource
management. In Emerging Wireless LANs, Wireless PANs, and Wireless MANs.
Wiley, 2008.

11. W. Zhang and L. Wittenburg. Distributed breakout algorithm for distributed
constraint optimization problems - DBArelax. In Proceedings of International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS), 2003.

Procedure 1 Main Functions in DLB-SDPOP

1: assignNum(vertex)

2: vertex.num <« counter++

3: for all X; do

4: if vertex.relation[i] == true then
5: if X; has not been visited then

6: X;.parent «— vertex

7 assignNum(X;)

8: return true

9: assignLow (vertex)
10: vertex.low <« vertex.num
11: for all X; do

12: if vertex.relation[i] == true then

13: if X;.num > vertex.num then

14: assignLow (X;)

15: vertex.low < min (vertez.low, X;.low)
16: elseifvertex.parent # X;

17: vertex.low < min (vertex.low, X;.num)

18: return true

19: deleteEdge (X, R})
20: if back-edge(i, k) == true then

21: remove RY from the pseudo-tree
22: for all lower agents X involved in R* do
23: initiateUTIL (X, P (X;))

24: if tree-edge(i, k) == true then

25: let Xk — P(XZ)

26: if (VXZ S C(Xl) s Sep(Xl) = {Xk})

27: && (Sep(X;) = {AP:})then

28: X; < root

29: initiateV ALUE (X, subtree (X;))

30: initiateUTIL (X, P (Xk)) <« previous UTILs
31: else

32: let X,, < highest agent in Sep(X;)

33: sendVALUE (X, C (Xm) U PC (X))

34: for all X, € subtree(Xy) in right-hand side do
35: traversal UTILg(XS>

36: switchRole «— valueChange(Xs,C (Xs))

37: addEdge(X;, RY)

38: if X; and X are in an ancestor-descendant relation
39: then

40: connect X;, Xj as a back-edge (Suppose X; is
41: descendant)

42: initiateUTIL (X;, P (X;) U PP(X;))

43: if X; and X}, are siblings

45: let X; < lowest common ancestor of X; and Xk
46: for all agents X on the tree-path from X; to X;
47: switchRole «— valueChange(Xs, C (Xs))

48: PC (X)) « C(X))

