The Intelligent Home Testbed

Victor Lesser, Michael Atighetchi, Brett Benyo, Bryan Haod,
Anita Raja, Régis Vincent,
Thomas Wagner, Ping Xuan and Shelley XQ. Zhang

Computer Science Department
University of Massachusetts at Amherst
Ambherst, MA 01003
lesser@cs.umass.edu

Abstract

Intelligent environments are an interesting developmadtrasearch appli-
cation problem for multi-agent systems. The functional spditial distri-
bution of tasks naturally lends itself to a multi-agent maaled the exis-
tence of shared resources creates interactions over whéchgents must
coordinate. In the UMASS Intelligent Home project we havsigieed and
implemented a set of distributed autonomous home contentagand de-
ployed them in a simulated home environment. Our focus imguily on
resource coordination, though this project has multiplelgand areas of
exploration ranging from the intellectual evaluation of #pplication as a
general MAS testbed to the practical evaluation of our apeiiting and
simulation tools.

1 Imntroduction

The intelligent home project (IHome) at the UMASS multi-age
systems lab is an exploration in the application of mulegsys-
tems technology to the problem of managing an intelligeni-en
ronment. We have implemented a sophisticated simulatecchom
environment, populated it with distributed intelligenthe-control
agents (including simulated robots) that control appkanand ne-
gotiate over shared resources, and begun experimentaitiowlifv
ferent coordination protocols and agent adaptability poesive-
ness to changing environmental conditions.

Our work is akin to the Adaptive House [14] and [5, 8] in that
the objective is for the environment to automate some ofdhkst
currently performed by humans — possibly with improvements
efficiency or quality of service. However, our focus is onoase
coordination and temporally sequencing agent activitiees shared
resources. A broad spectrum of research falls into the génat-
egory of intelligent environments. For example, one cldssark
deals with collecting and integrating information aboug Hctivi-
ties that occur within the environment [1] while anotherssldo-
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cuses on identifying and tracking humans as they move abeut t
environment [2, 15].

The UMASS simulated IHome environment is controlled by
intelligent agents that are associated with particulatiapges; a
shapshot of a sample run is shown in Figure 1. The IHome pop-
ulation set includes agents like an intelligent WaterHeabmf-
feeMaker, Heater, A/C, DishWasher, etc., and a robot fahiag
items and moving physical goods from one location to anofftes
home agents reason about their assigned tasks and seldictatan
actions based on the occupant’s preferences and the aliilab
resources. For example, if hot water is scarce, the Dish&ash
agent may elect to run a cold cycle, trading-off solutionligqy#or
resource consumption — the agent may also elect to wait luoitil
water becomes available. Agents coordinate over sharednes
like noise, electricity, temperature, and hot water. Reses) re-
source interactions, task interactions, and the perfocmaharac-
teristics of primitive actions are all represented and ¢jtiad in
the TAMS [4] task modeling framework. This enables agents to
reason about the trade-offs of different possible cour$estion
and to adapt behaviorally to the changing environment.

The research has several goals, among them are:

1. Examine the intelligent home domain as a general applica-
tion testbed for research in multi-agent systems.

2. Apply the TEMS [4] domain-independent task modeling feam
work to a new domain and evaluate its use in the rapid devel-
opment of a new multi-agent application.

3. Test and refine our multi-agent simulation environmeidi [1
that controls method execution and communication charac-
teristics for a set of distributed agents. The environment e
ploys a complex time mapping scheme and a process con-
troller to resolve timing issues between the distributezhag)
and to ensure reproducibility.

4. Testand refine our java-based generic agent constrdcdiome-
work [6] that facilitates agent construction through anndéve
driven component architecture. The framework also enables
agents to be decoupled from the simulator and executed in
their application domain with a simple change in internal
components, i.e., with a change to the makefile.

Space precludes discussing all of these points. We willfocu
on the challenges offered by the application domain, dsths
TAMS modeling framework from a high-level view, describe th
application and some of the agents, touch on the simulatdrave
used for the IHome project, and present experimental eshtir
information about the agent development tools or more méor
tion about the project, including screen snapshots, resstesuld
consult the group web pages [16].
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Figure 1:1Home Agents in Action

2 TAEMS Task Structures in the Intelligent Home

The simulator and the agents in our intelligent home modatbpr
lem solving activities using the TAEMS domain independesk ta
modeling framework [4, 11]. TAEMS models planned actions; ca
didate activities, and alternative solution paths from argified
perspective; all primitive actions are described statidlly via dis-
crete probability distributions in terms of quality, coathd dura-
tion. A fourth dimension, uncertainty, is implicit in thegtrability
distributions. Thus, TAEMS-based reasoners (e.g., [18])eval-
uate the quality, cost, and duration (and uncertaintiesarh eof
these) characteristics of each possible course of actidrsaliect
the course of action that bésineets the current constraints and
environmental conditions. For example, in a time conséaisitu-
ation, an agent may sacrifice solution quality and possibhsaome

- more resources to produce a result within the specified ihead|
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options in TEMS, usually via a TAEMS graph-grammar-generato
and then build the tools, or use existing ones, for reasonitigthe
task structures. In this usage, the programmers take tioe pfa
generative planner or problem solver that would normaltydpice
the task structures (as in [12]) from its own internal repreations.
This enables programmers to rapidly create agents forcgijans
where an off-the-shelf planner/problem solver is not amé.
The task structure shown in Figure 2 describes alternatayesw

1 Due to the combinatorics of the TAEMS scheduling problemst'beoes not nec-
essarily denote optimal.



to obtain water, obtain coffee, and brew the coffee. Comdiae
Acquire-Ground-Beangask; it has two subtasks, one of which is
another decomposable task, and anott@nr{d-Beany which is

a primitive action and is described in terms of quality, c@std
duration. The small icons under the action denote resowsageu
— resources and the resource interactions are absent fisrfigth
ure to improve readability. The arc leading froftquire-Beans
to Grind-Beands anenablesnon-local-effect (nle) and it denotes
a hard constraint thaf\cquire-Beananust have quality in order

common resources like electricity and water, the simple-fee
peer agent organization used in this project will probaklydl to
combinatorics and high coordination overhead. In situstisuch

as these, the agents should be organized into work-groups-or
cording to other partitioning schemes to reduce the scojpeterf
action.

In our model agents are associated with major appliances. We

decided on the model of associating agents with appliareesuse

we believe itis likely that in the future intelligent apptiees will be

for Grind-Beango execute, i.e., the agent must have beans before packaged with their own intelligent control software. Bifnt ap-

it can grind them. The_min quality-accumulation-function (qaf)
associated withAcquire-Ground-Beandenotes that its quality is
computed bymin(Acquire-Ground-Beans, Grind-Beansjodeling
the notion that poor beans or poor grinding produces poairgto
beans. Acquire-Beanshas two primitive action subtasks. Note
that using frozen beans produces a lower quality resultbgimg
beans from Starbucks, but that it also costs less and isdemaily
faster. If the CoffeeMaker is in a hurry, or has limited finahce-
sources, it may thus choose to use frozen beans. Howevée if t
agent is extremely time constrained, it will probably penicGet-
Coffeeby using instant coffee rather than obtaining ground beans
of either form.

This task structure illustrates the notion of quantifiedic@o
in TEMS and its facilitation of trade-off behaviors at rum¢.
However, it is not a good illustration of the use of uncettgiim
TAMS as the methods all have simple distributions and ne@repr
sented probability of failure. If execution failure showdcur the
agent will reschedule accordingly. However, the lack of eepre-
sentation of failure may keep the agent from working to redihe
probability of failure by choosing more conservative optioThis
can be important in cases when tight deadlines exist.

The quantifications of items in TAEMS is not regarded as a per-
fect science. Task structure programmers or problem sgkeer-
atorsestimatethe performance characteristics of primitive actions.
These estimates can be refined over time through learninani®]
reasoners typically replan and reschedule when unexpegteds
occur. Quantification in TAEMS is not limited to the charaar
tion of primitive actions. Interactions between tasksjcnd, and
resources are also described statistically. For examgenta de-
scribe their resource consumption behaviors in termsohaumes
non-local-effect and the effects of the resource on the daslde-
scribed via dimits non-local-effect. The limits nle describes the
negative effects of lacking sufficient resources to perfartask in
terms of power-effects on quality, cost, and duration. €heffects
can model a range of behaviors, from an increase in duration i
the case of a network resource to a complete reduction otesghe
quality to zero in the case of a hard resource like a locked Fibe
a non-consumable resource, e.g., network bandwidth, vtheme-
source is diminished during the usage and then returneslitatital
state.

3 The Intelligent Home

The intelligent home is a model of a small home constructetl an
executed using the generic multi-agent simulation enviremt [17].
The home consists of four rooms: a bedroom, a living roomflaba
room, and a kitchen, all joined by a common hallway. Though th
home is more of an apartment, size is actually not necessainysi
application to obtain interesting results; the interestgsues arise
when agent controllers interact and a smaller space rexyigveer
agents to generate interesting interactions.

Expanding the size of environment may create an issue of scal
ability with respect to resource coordination protocoléegs the
expansion is achieved through composition of (primariigepen-
dent sub-environments. If the intelligent environmentevaiarge
manufacturing factory, for instance, where hundreds oftegghared

pliances will probably have different types of agent coliérs and

the agents will probably be heterogeneous, interfacingutin a

common protocol. This leads to either a peer-to-peer orgéinn

or a group-style organization where agents are perhapsechas

according to function (e.g., washer and dryer), spatiatioo, or

resource usage. We choose the peer-to-peer approachganithi
tial implementation because it allows us to use the samelsimp
protocol sets for all agents and it does not limit or reducenag
interaction. In the future, we plan to experiment with diéfiet or-
ganizational structurings.

Thus, agents are associated with major appliances andrthey i
teract directly to coordinate over shared resources. Gtlyreve
model and coordinate over electricity, hot water, noiseansl lev-
els, and room temperature in each of the modeled rooms. Agent
coordinate using a resource coordination protocol digziss[13].

In terms of modeling issues, we made some simplifying as-
sumptions. Based on work ongoing in the community, we asdume
the existence of supporting technology for: identificatioal track-
ing of individuals moving about the environment, obtainiignt
preference profiles that include things like deadlines atiqudar
activities (e.g., dishes should be done by the time the tciets
home from work), and assimilating different occupant preiees
for parameters like room temperature. Since we currentlgleyn
only one fetching robot, we also did not address spatial tcains
issues like two robots attempting to use the same door samedt
ously (it is not clear that we will model robots at that fine eleof
granularity in the future either).

The agents that populate the intelligent home are heteeogen
each having its own internal problem solver that reasomguUBfEMS
task structures. Some of the agents make use of generic@gent
trol tools like the Design-to-Criteria scheduler [18], biere is no
requirement to do so as we are interested in examining thierhot
up production of agents for this application. All the agentse
constructed using the generic Java Agent Framework [6]ekiew
the framework’s role is to “glue” together disparate congras
and it does not impose any restrictions on the types of adbats
can be constructed or how the agents approach particuléar pro
lems. Interagent communication is done via KQML [10] routed
through the simulation environment as discussed prewouidhe
population of the intelligent home includes a mobile robad ap-
pliance agents like the Dryer, TV, DishWasher, WaterHeAtac-
uumCleaner, Heater, A/C, CoffeeMaker, and the OtherAppba
agent. The OtherAppliances agent is a place holder for aibygli-
ances not currently modeled by agents. It makes resourcestsy
and otherwise stresses and exercises the system in muchntiee s
way as an additionat agents would. Space precludes discussing
each agent in detail, though the agents are generally dbeaizacl
according to the tasks they perform, the alternative wapetform
them, the resources they consume, and the agents with wiggh t
interact. For example:

AIC Agent Summary: Responsible for climate regulation. Has cooling
ability, limited heating ability by routing air flow througimome, and
the ability to control humidity by routing air through therpressor.
The agent’s control flow is shown in Figure 3.

Task Performance Options Different fan and compressor levels re-
sulting in different cooling rates with different noise cheter-
istics.



Shared Resources Noise: interacts with the DishwWasher, Dryer, MAS when a fault occurs? How does one measure its adaptative

VacuumCleaner, CoffeeMaker, and TV agenBlectricity: capabilities?
interacts with the DishWasher, Dryer, VacuumCleaner, TV, If you evaluate a real-world MAS, is it possible to know for
and CoffeeMaker agentsTemperature: interacts with the certain that the runtime environment is identical from oue to

Heater agent.
Task Interactions Task sharing with the Heater agent to control
room temperature.

the next? Can one know that a failure occurs at exactly thesam
time in two different runs when comparing system behaviogh C
it be garunteed that inter-agent message traffic will notédayed
or corrupted by network events external to the scenario?
Monitor If you evaluate a MAS system in a simulated environment, how
plan, schedule can it be known that the system being tested will react oplyma
a majority of the time? How many different scenarios havenbee

attempted? Is the number is large enough to be represeattativ

Based on these observations, we have tried to design an envi-
ronment that allows us to directly control the baseline $ataal
environement (e.g. be deterministic from one run to the)nefile
permitting the addition of “deterministically random” ente that
can affect the environment throughout the run. This enahkede-
terminism required for accurate coordination strategy ganisons
without sacrificing the capricious qualities needed in aviren-

Figure 3:AirConditioner Agent’s Control Flow ment to fully test adaptability.
MASS[13] is the next generation of the TAEMS simulator cre-

One of the agents in the home is actually a generic agent. It ated by Decker and Lesser in 1993. Agents running in the MASS
uses the Design-to-Criteria scheduler so that its behsai@ com- environment still use TEMS a hierarchical representatibar
pletely defined and described in TEMS and a set of goal aiteri agent's goals and capabilities (see section 2), to reprabeir
for the scheduler. The generic agent can, in essence, bemayne  knowledge.

new task

(Posted)

Remove
from agendd

Reschedule

Heater,can yoy
do it better?

of the other agents simply by changing its descriptive tdskcs The primary role of the MASS controller is to simulate the-exe
tures and the scheduling criteria. The generic agent wilbivoays cution of methods requested by the agents. Each agent hassh pa
perform identically to the agent it emulates because thatagay view of the environment, typically describing its local wief a
make different trade-off decisions than those made by thedsc goal and possible solutions, which determines the expeectiees
uler. In the future, we will compare the performance of theage resulting from such an execution. This view of the world Idca
agent to the specialized agents to determine the diffesemoe the the agent is known as issibjectiveview. The simulator has its own
relative strengths of each. view of the world (the “correct” one, which we call thubjective

view) which it uses to compute the results of the execution: E
gineering differences between the subjective and obgactigws
allow for a wide range of scenarios to be simulated.

We will give here a summary of TEMS and how it is used to

4 Simulation Environment

The intelligent Home project was built to test agent's reses . h
coordination but also to test our agent framework. The frame Simulate an execution, the reader should refer to [3] foramu®-
work, we build is composed of separate entities the Multi itge tails. In TAEMS, each method is described along three dirnassi

Survivability Simulator (MASS) and the Java Agent Framewor ~ COSt quality and duration, each of which is described withsa
(JAF). MASS was used to simulate the intelligent house, fwsi crete probability distribution. The quality representy amethod

late agent’s method execution and resources usage. JAFsgds u Value or characteristic that should be maximized, the so$te di-
to build all the agents and is a very nice framework that letpe ~Mension you want to minimize and duration provides a engblin
ple concentrate on their agent's behaviour rather tharetttenical mechanism for scheduling, coordination and deadiines.sirhe-
aspects of an agent (like how to deal with TCP/IP messagese pa lator uses the distributions in its objective view when cating the

them, etc..). In fact JAF offers for free all the technicalests ofan  v@lues for a method execution. Note also that this protsiiuldis-
agent like comunication, control, state storage, TAEMS getiva. tribution offers the best case outcomes, the simulatordeidrade

This section will explain how MASS was designed for evaluat- "€SUlts as necessary (lower quality, more cost or longeatidu) if
ing multi agent systems. required resources are not available, or if execution iscéddd by

interactions with other methods.

. The operating environment is represented in MASS by two mech
4.1 MAS Simulator anisms, a visual representation and a list of resources.vithal
MASS was designed to be a tool to evaluate agents and agent's’ePresentation is composed by a 2D map (the floor map of a house
coordination. When you tried to evaluate agent and multnage for example). Each agent connected to the simulator candse p
systems, a lot of problems occurs. The first concerns ouityabil ~ its Visual representation (usually an icon) and locatiotthenmap.

to accurately measure the influence of different multi-agenor- Semblances of movement can be obtained by simply infornhieg t
dination strategies in an unpredictable environment. strisilarly simulator of a new location. The resource listing shows tatesf
difficult to realistically model truely adaptive behavior multi- all the resources used by agents’ methods during their ‘siied
agent systems within a static environment. These two segynin ~ €xecution. The simulator is able to define resources a phiotifor
contradictory goals lie at the heart of the design of the Magent convenience they are usually instantiated dynamicallyrtime as
Survivability Simulator. the objective TAEMS view specifies a need for them.

A significant advantage multi-agent systems (MAS) have over The simulator’s second purpose is to act as a message router f
traditional designs is the fact that the system is distabutThe  the agents. The agents send and receive their messagegtthineu

decentralized, partially autonomous and redundant, eatfisuch simulator, which allows us to model adverse network coodi
a system makes them less sensitive to certain classes tf taul  through unpredictable delays and transfer failures. Tbigimg
attacks. This same decentralization, however, also ma#egdult also plays an important role in the environment’s genertrdan-
to anaylze these systems. How do we recognize the reactian of iSM, as it permits control over the order of message recrept f



one run to the next.

4.1.1 Controllable Simulation

In our simulated experiments, our goal is to compare thebeha

ior of different algorithms in the same environment undergsame
conditions. To correctly replicate running conditions aing later
time, the simulation should have its own notion of time, W&o

notion of random and its own notion of events. Two simulation

techniques exist which we have exploited to achieve thisabeh
ior: discrete time and events. Discrete time simulatiomsags
the time line into a number of slices. In this model, the samd
begins a time slice by sending a pulse to all of the runningpmmsm

nents, which allows them to run for a period of (real) CPU time

(with respect to our deterministic time line, of course). télthat
this is different from the notion of event as it is traditidig&nown
in the simulation community, and is separate from the notibn
the “event streams” which are used internally to the agentsir
environment.

All of the message traffic in the simulation environment isteal
through the simulator, where it is instantiated as a mesesagpet.
Similarly, execution results, resource modifiers or sexdpactions
are also represented as events within the simulation dtartrgve
attempt to represent all activities as events both for ctascy rea-
sons and because of the ease with which such a represerdation
be monitored and controlled.

The most important classes of events in the simulator are the
executiormandmessag@vents. Anexecutionevent is created each

In our model, a pulse does not have a predefined CPU time; eachtime an agent uses the simulator to model a method’s executio

agent decides independantly when to stop running, whicwall
agent performance to remain independant of the hardwatmst r

As with all events, execution events will define the methetést
time, typically immediately, and duration, which dependastbe

on. The second type of simulation is event based, which meansmethod’s probabilistic distribution as specified in thesaitive TAEMS

that the control is directed by events that force agentsactrd he
MASS simulator combines these by using a discrete notiomf t
but along with event based control. In this model, agentswee
within descrete time slices, but are also notified of agti@ihethod
excution, message delivery, etc.) through event notiboati

In the next section we will discuss discrete time simulatod
the benefits that arise from using it. We will then descrileertbed
for an event based simulation within a multi-agent envirenm

4.1.2 Discrete time simulation

Because MASS utilizes a discrete notion of time, all agamsing
in the environment must be synchronized with the simulatime.
To enable this synchronization, the simulator begins danhslice
by sending each agent a “pulse” message. This pulse telégthe
it can resume local execution, so in a sense the agent fasdbiyp

transforming the pulse to some amount of real CPU time on its

local processor. This local activity can take an arbitramoant
of real time, up to several minutes if the action involves ptar
planning, but with respect to the simultaor, and in the petioas of
other agents, it will take only one pulse. This techniquedea®ral
advantages:

task structure (see section 2). The execution event witl eddcu-
late the other qualities associated with a method’s exacutiuch
as its cost, quality and resource usage. After being cretite@xe-
cution event is inserted into the simulator’s time basedegeaeue,
where it will be represented in each of the time slots duriicty
it exists. At the point of insertion, the simulator has comnegl
but not assigned, the expected final quality, cost, duratimhre-
source usage for the method'’s execution. These chardicterisl|
be accrued (or reduced) incrementally as the action is peed, as
long as no other events perturbate the system. Such pditurba
can occur during the execution when forces outside of théodet
affect its outcome, such as a limiting resource or inteoactiith
another execution method. For example, if during this netho
execution, another executing method overloads a resoeqcered
by the first execution, the performance of the first will be lee d
graded. The simulator models this interaction by creatiimiting
event, which can change one or more of the performance gator
the execution (cost, quality, duration) as needed. Theterace-
sentation of this change is also defined in the simulatoijsative
TAMS structure.

The other important class of event is the message eventhwhic
is used to model the network traffic which occurs between tagen
Instead of communicating directly between themselves,mdne

1. A series of actions will alWayS I’equire the same number of message needs to be sent from one agent to another (Or to the
pulses, and thus will always be performed in the same amount group), it is routed through the simulator. The event'stiiife in
of simulation time. The number of pulses is completely inde- the simulation event queue represents the travel time tissage
pendent of where the action takes place, so performance will would use if it were sent directly, so by controlling the dioa of
be independent of processor speed, available memory, etc.. the event it is possible to model different network condiioMore

interesting network behavior can be modeled by corruptirdyap-

2. Events and execution requests will always arrive at theesa
time. Note that this technigque does not garuntee the omglerin
of these events within the time slice, which will be discasse
later in this section.

ping the contents of the message event. Like execution vt
message event may also may be influenced by other events in the
system, so a large number of co-occuring message events migh
cause one another to be delayed or lost.

To prevent non-deterministic behavior and race conditians
our simulation environment, we utilize a kind of “contrallean-
domness” to order the realization of events within a giveneti
pulse. When all of the agents have completed their pulse-acti
ity (e.g. they have sucessfully acknowledged the pulse ageds
the simulator can work with the accumulated events for tinag t
slot. The simulator begins this process by generating a gueni
number or hash key for each event in the time slot. It use®thes
keys to sort the events into an ordered list. It then detdstidally
shuffles this list before working through it, realizing easkent in
. . turn. This shuffling technique, coupled with control ovee tlan-
4.1.3 [Event based simulation dom function’s initial seed, forces the events to be preaeas the
Eventswithin our simulation environment are defined as actions S&@Me order during subsequent runs without unfairly wenghé
which have a specific starting time and duration, and may be in Certain class of events (as would take place if we simply gssed
crementally realized and inspected as one may do in the xeéd w the sorted list). This makes our simulation completely aebeis-

Using this technique, we are able to control and reproduee th

simulation to the granularity of the time pulse. Within thEas

of a single pulse however, many events may occur, the omglefin
which can affect simulation results. Messages exchanged&mts
arrive at the simulator and are converted to events to fatlicon-
trol over how they are routed to their final destination. &lstut
everything coming from the agents, in fact, is convertedvents;

in the next section we will discuss how this is implemented the
advantages of using such a method.



tic, without sacrificing the unpredictable nature a realld@nvi-
ronment would have.

5 Sample Runs

The first results presented here only reflect one type of caatidn
and is not yet a comparaison of different negociation p@tcThe
primary purpose of the simulator is to allow successivestasing
the same working conditions, which enables us to use therinal
sults as a reasonable basis for the comparison of competagmy a
tive techniques. In this section, we will examine perforecaon
an agent by agent basis, and compose an aggregate obseruatio
ing a working definition of optimal agent performance: thé&mgl

performance of any agent is the performance achieved wtisn it

run alone in the environment with ample resources with wiich
perform its tasks. Performance in this case denotes théytied
agent achieves and the constraints it meets, e.g., prefe@n-
straints or deadline constraints.

In the three experiments presented in this section, the BHem
populated by with seven agents, including the DishWasha&noR
WaterHeater, CoffeeMaker, Heater, AirConditioner, arel@ther-
Appliances agent (that simulates the presence of multiero
agents in the environment). The communications patteresan
experiment are monitored, as is resource consumption anbeth
haviors of the agents. Communications statistics, sucheasum-

ber of messages produced, provide a measure of the efficacy

coordination. The environment is held constant in eacheftims
(in terms of communication bandwidth, execution perforoganf
actions, etc.) while the availability of resources is vdrie

In all three experiments, the preferred temperature gpiiii6

necessary resources. In both of the experiments the deddiin
task completion is fairly tight in order to make the coordioa
problem non-trivial.

In contrast to the long-planning agents the more reactieatsg
(WaterHeater, Heater, AirConditioner) fair better. Thdyodif-
ference between their individual runs and the group runasith
the latter case they take longer to achieve the desiredisesie
Heater and the AirConditioner take until time 77 to reaclirttean-
perature goal of 76F, in contrast to the 41 clicks requirethin
individual case.

The behavior of the CoffeeMaker and DishWasher agents indi-
cate a problem with our simple protocol. Though we have prior
ity measures, higher priorities are not assigned to agéatsare
currently executing their plans. Thus tasks like makindemfire
always superseded and interrupted by other higher pritagis.
Additionally, the priorities of tasks are not elevated asythre in-
terrupted, thus they do not become less interruptible dues {a
feature often found in priority based scheduling algorihror as
they get closer to their deadlines. The problem also steams &
flawed implementation of personal preference — agent tigenn
these experiments do not always reflect the client’s petsoe&
erences and thus the notion of a global utility function (emdocal
view of one) is somewhat muddied. This issue is currentlydpei
addressed.

The second experiment is identical to the first, with the pxce

ofiion that the coffee making tasks are assigned the highestibv

priority in the system, enabling the CoffeeMaker to obthie tle-
sired resources to carry out its tasks. However, its regocon-
sumption pushed back temperature regulation tasks negttithe
A/C and Heater agents taking until time 90 (rather than 77¢&ach

degrees in all rooms and temperature change in the house is ef Neir target temperatures.

fected by the temperature-related agents, but also acgptdia

curve that describes the heat exchange between the insithe of

In the third experiment, Figure 5, the resources are cordayur
similarly except that the maximum capacity of the water ték

house and the outside environment and between the rooms of th féduced to 60 gallons and it is empty at the start of the enysni.

house. The temperature related agents (AirConditionatéieare
reactive in nature, they respond to situations in which émepter-
ature is not at its preferred point. In these experimentsjritial
temperature is set at some point other than the preferregetem
ature and it is the task of the temperature control agentsing b
it back into line. Like the temperature control agents, thetéh

Heater agent works to keep the hot water level between a define
minimum and maximum capacities, and the tank is assignedi-an i

tial quantity of hot water. Using the MASS simulator, we anees
that all thoses experiences are done in the same conteltabl
and there is no unexplicit randomness. Therefore it's ptestd
compare all thoses runs together.

The objective in the experiments is for the agents to carty ou
their assigned tasks, e.g., make coffee or wash the dishére in

alloted time. For reactive agents, like the A/C agent, theab
tive is to satisfy the expressed preference constraint, keegp the

temperature at 76 degrees, keep the water tank above thediefin

minimum, and so forth.
In the first experiment, the resources are configured asafsilo
15Kw of electricity is available, 140 gallons of hot wateitiily

reside in the water tank and the tank maximum is 200 galldmes, t
maximum allowable noise level at any time is 120 Db, and the in

tial temperatures in the different rooms are as follows: rbech
50F, bathroom 90F, kitchen 90F, living room 50F.

The results for the first run are shown in Figure 4. In this ex-

periment the agents that require multiple resources toy caut
their tasks, and who have longer sequential chains of activet
must take place, like the CoffeeMaker and the DishWash&igime
poorly when compared to their independent performanceaisse

these agents require multiple resources at the same mohent t

performance requirements are higher and in this situatidwere
resources are constrained, they are generally unable &inaie

This decrease forces all agents using hot water to negotiatehe
resource. In this case, the DishWasher is able to perform e
task out of its four assigned tasks. The 84 messages sentby th
agent is testimony to its attempts to obtain the resourcébagat
could perform its other tasks (it was refused and cancelethdy
WaterHeater).

Interestingly given the tighter hot water constraints, \tYeter-
Heater agent also performed fewer tasks than it did in thaquie
experiments. This is because the DishWasher was unablesto ex
cute, and the maximum capacity of the tank was reduced, tieus t
demand for water from a volume perspective also decreasésl. |
also interesting to note that the WaterHeater sent a langdauof
nullification or cancellation messages to all of the consuagents
because it was unable to fulfill all the requests it received.

In this run the AirConditioner and Heater agents also failed
to reach their target temperatures. This is the result ofDisé-
Washer's thrashing behavior. It would request and resdectrie-
ity and thus interfere with the temperature control ageitsen the
DishWasher was unable to obtain the desired amount of hetryat
would release the electricity reservation but the thragbiehavior
confused the (slow to respond to released resources) tataper
control agents, resulting in diminished performance oir {beart.

In addition to the three coordination experiments, we akse p
formed an experiment in which the appliances are not igesti
(normal appliances) and do not coordinate over resourcethid
case, appliances are given a set of tasks to perform andithplys
attempt to carry out the tasks. Resources are configurediashsi
first coordination experiment, i.e., 15Kw of electricityagailable,
140 gallons of hot water initially reside in the water tankidahe
tank maximum is 200 gallons, and the maximum allowable noise
level at any time is 120 Db. With no coordination, 9 minuteerf
the start of the simulation the electricity resource is edeximed



Agent # of Tasks Final Quality Resources Mes Conflict Tasks Dropped
Alone | THome || Alone | THome || Alone | THome || Alone [Home Alone | THome
EJRT]N
Dishwasher 4 2 135 76 10 10 0 21 1] 5 0 2
Robot 5 5 10 10 0 0 0 o[O0f[oO 0 0
WaterHeater 83 10 26| 3 0 0 0
OtherAppliances|| 37 33 10 10 42 36 0 8 |15 2 0 4
CoffeeMaker 4 0 80 0 3 3 0 1]11] 24 0 4
4 4 125 125 3 3 0 0 0
4 4 125 125 3 3 0 0 0
Heater 8(41) | 7(77) 40 40 8 7 4 8 3]0 0 1
AirConditioner || 8 (41) | 12 (77) 35 20 16 24 4 12 4] 0 0 0

Figure 4: Experiment 1Aloneindicates the performance when the agent executed alohe entvironment with sufficient resources. The
IHomecolumn indicates performance when the agents are exegutedroup and resources are share@R/Nindicates conflicts emitted,

received, or nullified.

Agent # of Tasks Final Quality Resources Mes Conflict Tasks Dropped
Alone | THome || Alone | THome || Alone T THome || Alone [Home Alone | THome
EJTR]N
DishWasher 4 1 135 40 10 84 0 16| 2 | 11 0 3
Robot 5 5 10 10 0 0 0 o|lO0] O 0 0
WaterHeater 50 10 43| 0 | 31 0 0
OtherAppliances|| 37 28 10 10 42 37 0 1]13] 9 0 9
CoffeeMaker 4 0 80 0 3 3 0 31421 0 4
4 4 125 125 3 3 0 0 0
4 4 125 125 3 3 0 0 0
Heater 8(41) | 9( 40 40 8 9 4 6 | 2|0 0 0
AirConditioner || 8(41) | 10 (*) 35 20 8 22 4 1]16]0 0 0

Figure 5: Experiment 3Aloneindicates the performance when the agent executed alohe environment with sufficient resources. The
IHome column indicates performance when the agents are exegutedroup and resources are share@R/Nindicates conflicts emitted,

received, or nullified.

by the DishWasher’s pre-rinse cycle and the CoffeeMakagsvb
ing in conjunction with the other appliances being activee To-
tal demand was 19Kw. The severity of this event is dependent o
one’s model of what should happen in the event of an overkad,
circuit breaker cutting out and all actions coming to a hatilia
human resets the breaker. If we ignore the electricity oeerland
continue, the appliances later exceed the noise thresha20db
by 10db. Other examples abound. Obviously, this experirigent
based on the assumption that all tasks would be carried dbeat
same time without intelligent controllers, when in fact, @nfan
would be handling the sequencing. It is intended only tcstHate
the role of coordination in this context.

6 Conclusions and Future Work

We have designed and implemented a simulated intelligemieho
environment and populated it with intelligent appliancertg. The
agents interact and coordinate using the simple protoalshared
resources, contract over task-allocation interactiond,use a dif-
ferent coordination protocol for task overlap conditiodghile we
are pleased with this work, there is much room for improvemen
and expansion.

IHome environment scenarios and situations requiring roone-
plex negotiation between the agents. Temporal chains ofi-mul
resource tasks is one example of this — particularly if mertdmks
are assigned to different agents. This leads to an intéeceraulti-
agent task and resource coordination problem. The inttamuof
multiple robots in the environment will motivate this arefaes-
ploration. We will also explore survivability, adaptabjliand re-
sponsiveness issues in this context. We feel that diagisaikey
part of adaptability, which is needed to make MAS more rolust
changing or adversarial environments. Our goal is to usgndisis
[7] and adaptability to allow the agent to dynamically woskvards

the appropriate tradeoff of robustness versus efficienaygoing
research is looking at diagnosis of coordination actigitend how
diagnostic and evidential information can be modeled inraalo
independent manner.

As mentioned, other areas of improvement include refinirrg ou
evaluation metrics so that we can more easily evaluate iempatal
data and fully incorporating personal preference profites the
agents’ priority mechanisms.

But we have alsa tested our MAS Simulator and its associated
framework to built the Ihome project very quickly. The MASSI
ulator will allow us to really compare all the protocols we going
to implement.

In short, the intelligent home is proving to be an interegtn-
vironment for experimentation with MAS technologies. Thalm
tiple different types of resource and task interactionsnein this
application domain provide a rich landscape for work in clira-
tion and local agent control.

References

[1] Jason A. Brotherton and Gregory D. Abowd. Rooms take:riet®m
takes notes! IfProceedings of the 1998 AAAI Spring Symposium on
Intelligent Environmentspages 23—-31, 1998.

[2] T. Darell, G. Gordon, J. Woodfill, and M. Harville. Tracig people
with integrated stereo, color, and face detection.Ptoceedings of
the 1998 AAAI Spring Symposium on Intelligent Environmersiges
44-49, 1998.

Keith Decker and Victor Lesser. Quantitative modelifgcomplex
environments. Technical report, Computer Science Deautntni-
versity of Massachusetts, 1993. Technical Report 93-21.

Keith S. Decker. Task environment centered simulatitmM. Pri-
etula, K. Carley, and L. Gasser, edito&mulating Organizations:

(3]

(4]



Computational Models of Institutions and GrougsAAl Press/MIT
Press, 1996. Forthcoming.

[5] Werner Dilger. A society of self organizing agent in thetelligent
home. Technical report, Technical Report SS-98-02 Staddfoali-
fornia, Menlo Park, March 1998.

[6] Bryan Horling. A Reusable Component Architecture forefg Con-
struction. UMASS Department of Computer Science Techrirel
port TR-1998-45, October 1998.

[7] Bryan Horling, Victor Lesser, Regis Vincent, Ana Bazz and Ping
Xuan. Diagnosis as an Integral Part of Multi-Agent Adagtbhbi
Computer Science Technical Report TR-99-03, UniversityMa-
sachusetts at Amherst, January 1999.

[8] Bernado Huberman and Scott H. Clearwater. A multi-agastem
for controlling building environments. IRroceedings of the First
International Conference on Multi-Agent Systems (ICMASPages
171-176, 1995.

[9] David Jensen, Michael Atighetchi, Rgis Vincent, anddtar Lesser.
Learning quantitative knowledge for multiagent coordiorat In Pro-
ceedings of the Sixteenth National Conference on Artificitelli-
gence Orlando, FL, july 1999. AAAI.

[10] Yannis Labrou and Tim Finin. A Proposal for a new KQML 8ifie
cation. Computer Science Technical Report TRCS-97-03yédsity
of Maryland Baltimore County, February 1997.

[11] Victor Lesser, Keith Decker, Norman Carver, Alan GatvBaniel
Neiman, Nagendra Prasad, and Thomas Wagner. Evolutioneof th
GPGP Domain-Independent Coordination Framework. Compute
Science Technical Report TR-98-05, University of Massaeltts at
Amherst, January 1998.

[12] Victor Lesser, Bryan Horling, Frank Klassner, Anitaj&aThomas
Wagner, and Shelley XQ. Zhang. BIG: A resource-boundediinée
tion gathering agent. IRroceedings of the Fifteenth National Confer-
ence on Artificial Intelligence (AAAI-98July 1998. To appear. See
also UMass CS Technical Reports 98-03 and 97-34.

[13] Victor Lesser, Atighetchi Michael, Brett Benyo, Bryarorling,
Anita Raja, Regis Vincent, Thomas Wagner, Ping Xuan, and
Shelly XQ Zhang. The umass intelligent home project. In
Proceeding of the Third Conference on Autonomous Aged99.
http://mas.cs.umass.edu/research/ihome/.

[14] Michael C. Mozer. The neural network house: An enviremtnthat
adapts to its inhabitants. IRroceedings of the 1998 AAAI Spring
Symposium on Intelligent Environmenpsges 110-114, 1998.

[15] Rainer Stiefelhagen, Jie Yang, and Alex Waibel. Towatrdcking
interaction between people. Rroceedings of the 1998 AAAI Spring
Symposium on Intelligent Environmenpsges 123-127, 1998.

[16] The UMASS Multi-Agent Systems Laboratory.
http://mas.cs.umass.edu.

[17] Regis Vincent, Bryan Horling, Thomas Wagner, and Midt@sser.
Survivability simulator for multi-agent adaptive coordtion. InPro-
ceedings of the First International Conference on Web-Badedel-
ing and Simulation1998. To appear. Also available as UMASS CS
TR-1997-60.

[18] Thomas Wagner, Alan Garvey, and Victor Lesser. Cat@irected
Heuristic Task Scheduling.International Journal of Approximate
Reasoning, Special Issue on Schedylitp8. To appear. Also avail-
able as UMASS CS TR-97-59.



