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ABSTRACT

Complex agents operating in open environments
must make real-time control decisions on schedul-
ing and planning of domain actions. These deci-
sions are made in the context of limited resources
and uncertainty about outcomes of actions. The
question of how to sequence domain and control
actions without consuming too many resources
in the process is the meta-level control problem
for a resource-bounded rational agent. Our ap-
proach is to design and build a meta-level control
agent architecture with bounded computational
overhead. It supports decisions on when to ac-
cept, delay or reject a new task, how much effort
to put into scheduling when reasoning about a
new task and whether to reschedule when actual
execution performance deviates from expected
performance. We show that efficient meta-level
control leads to significant improvement in per-
formance and provide empirical results to sup-
port our claim.
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1. INTRODUCTION

Agents in complex environments must reason about their
local problem solving actions, interact with other agents,
plan a course of action and carry it out. All these have to
be done in real time in the face of limited resources and un-
certainty about action outcomes. Furthermore, new tasks
can be generated by the environment at any time, which
in turn may necessitate rescheduling or replanning. This
requires an agent’s deliberation to be interleaved with exe-
cution. The planning and scheduling of tasks are non-trivial
activities, requiring either exponential work, or in practice,
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a sophisticated scheme that controls the complexity. In this
paper, we describe a meta-level control architecture which
provide effective allocation of computation resulting in im-
proved performance of individual agents in a cooperative
multi-agent system

We classify agent actions into three categories - domain,
control, and meta-level control actions. Domain ac-
tions are executable primitive actions that achieve the vari-
ous high-level tasks. Control actions are scheduling actions
that choose the high level tasks, set constraints on how to
achieve them and sequence the detailed domain level ac-
tions that achieve the selected tasks. Other potential control
actions are coordination actions that facilitate cooperation
with other agents in order to achieve the high-level tasks; or-
ganizational adaptation and communication activities that
generally occur in multi-agent systems. For the purposes of
this paper we restrict control actions to just scheduling ac-
tions within a single agent and study the effect of optimizing
the sequential decision making process. Meta-level control
actions optimize the agent’s performance by choosing and
sequencing domain and control actions.

Agents perform control actions to improve their perfor-
mance. Many efficient architectures and algorithms that
support these actions have been developed and studied [1,
4, 5, 3, 9]. Agents receive sensations from the environment
and respond by performing actions that affect the environ-
ment using their effectors. The agent chooses its domain
level actions and this might involve invoking the schedul-
ing module. Classic agent architectures either overlook the
cost of control actions or they assume a fixed and negligi-
ble cost and do not explicitly reason about the time and
other resources consumed by control actions, which may in
fact degrade an agent’s performance. An agent is not per-
forming rationally if it fails to account for the overhead of
computing a solution. This leads to actions that are without
operational significance [6].

Consider an administrative agent capable of performing
multiple tasks such as answering the telephone, paying bills
and looking for information on laptops with the best value.
It usually takes the agent a significant amount of time to find
the laptop which best fits the user’s preferences. Suppose
the agent does not perform any meta-level reasoning about
the importance or urgency of the tasks. It will then spend
the same amount of time deciding whether to pick up a ring-
ing phone as it does on deciding which laptop manufacturer
sites to visit. If the agent is equipped with meta-level rea-
soning capabilities, it will recognize the need to make quicker
decisions about the phone call than about the laptops since



there is a tight constraint on the ringing phone, namely that
the caller could hang up. Meta-level control will also allow
the agent to dynamically change its decisions based on its
current state. For instance, if the agent’s deadline for deter-
mining the laptop information is imminent, the agent could
decide not to answer any phone calls until the search is com-
pleted and the suggestion is made to the user. The agent is
thus able to make better decisions about answering calls as
well as completing its other tasks by dynamically adjusting
its decision based on its current state and the tasks at hand.

Our agent architecture will support this dynamic adjust-
ment process by introducing resource-bounded meta-level
reasoning in agent control. Meta-level control actions allo-
cate appropriate amount of processor and other resources to
either domain or control actions at appropriate times. To do
this optimally, an agent would have to know the effect of all
combinations of actions ahead of time, which is intractable
for any reasonably sized problem. The question of how to
approximate this ideal of sequencing domain and control ac-
tions without consuming too many resources in the process,
is the meta-level control problem for a resource bounded
rational agent.

Our solution to this problem shows that a judicious choice
of high-level features can be used by simple meta-level con-
trol rules to get significant increase in performance. The
high-level state features provide qualitative characterizations
of the system state. We also show that there is significant
advantage to having a predictive model of task arrivals while
making control decisions. To our knowledge this is the first
demonstration of the effectiveness of meta-level control in
complex agent architecture.

We construct a series of increasingly sophisticated ap-
proaches, all based on the abstract features used to repre-
sent system state, to handle the meta-level control problem.
They differ by the amount of knowledge, including learned
knowledge they use. In the most simple case, the heuris-
tic policy is a set of hand-generated rules that are mostly
environment independent. Next, we explore a set of more
sophisticated set of hand generated rules that use knowledge
about task characteristics including arrival times and dead-
lines. We compare these approaches to two baseline strate-
gies: random and deterministic and show that the heuristic
strategies perform significantly better than the baseline ap-
proaches in Section 5. The heuristic strategies provide a
better baseline to evaluate learning strategies for meta-level
control because they are more indicative of the positive ef-
fects of meta-level control.

We plan to use these abstract state features to represent
the state of a MDP-based meta-level controller which uses
reinforcement learning (RL). The abstract features bound
the otherwise exponential state space of the MDP for this
complex problem.

The paper is structured as follows: we enumerate the as-
sumptions made in our approach in Section 2 and describe
the agent architecture in which meta-level control will op-
erate in Section 3. In Section 4, we present and evaluate a
case-base of hand-generated heuristics for the different meta-
level control decisions. Experimental results illustrating the
strength of meta-level control in agent reasoning and the
effectiveness of the heuristics are provided are given in Sec-
tion 5. In Section 6, we describe the conclusions and the
future directions of this work.
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Figure 1: Control-flow in a bounded rational agent

2. ASSUMPTIONS

The following assumptions are made in this work: Each
agent a has a finite set of tasks 7; which are generated by
the environment and arrive in a finite interval of time. The
overall goal of an agent is to maximize the utility generated
over this finite time horizon. Each agent has a model of
all the high-level tasks it is capable of performing. The
agent is not explicitly aware of the arrival model of tasks
but can potentially learn information that either implicitly
or explicitly models the environment.

Each task T; arriving at an agent has an arrival time
AT; and a deadline DL; associated with it. An agent may
concurrently pursue multiple high-level tasks and the agent
derives utility by completing a task successfully within its
deadline. It is not necessary for all high-level tasks to be
completed in order for an agent to derive utility from its ac-
tions. A task T; can be achieved by one of various alternative
ways(plans) P, P/ ™! P,i+2  PF. A plan P/ is a sequence
of executable primitive actions Py = {mi,ms2,...myn} and
has a wutility distribution UDp,; and duration distribution
DDp,; associated with it. The tasks do not accrue util-
ity uniformly over their execution duration, instead they
gain utility only when execution of the entire plan completes
within the task deadline.

The agent’s control decisions involve choosing which of
these high-level tasks to pursue and how to go about achiev-
ing them. There can be local dependencies within the prim-
itive actions belonging to a task. These dependencies can be
hard or soft precedence relationships. Scheduling actions do
not have to be done immediately after there are requests for
them and in some cases may not be done at all. There are
alternative ways of completing scheduling activities which
trade off the likelihood of these activities resulting in opti-
mal decisions versus the amount of resources used. System
execution is single threaded allowing for one primitive action
at the most to be in execution at any time.

3. AGENT ARCHITECTURE

In this section, we describe an open agent architecture
which provides efficient meta-level control for bounded ra-
tional agents. Figure 1 describes the control flow in this
architecture.

Environment: The environment consists of a task gen-
erator which generates tasks for individual agents based on
an arrival model.



Meta-Level Control Layer (MLC): The MLC is in-
voked when certain exogenous or internal events occur. The
controller computes the corresponding system state and de-
termines the best action prescribed by the policy for that
particular task environment. The policy is a simple hand-
generated heuristic policy in the case of the naive heuristic
strategy (NHS) and a more complex heuristic policy based
on task arrival information in the case of the sophisticated
heuristic strategy (SHS).

This architecture accounts for computational and execu-
tion cost at all three levels of the decision hierarchy: do-
main, control and meta-level control activities. The cost of
domain activities is modeled directly in the task structures
which describe the tasks. They are reasoned about by con-
trol activities like scheduling. Performance profiles of the
various control activities are used to compute their costs
and are reasoned about by the meta-level controller. Meta-
level control activities in this architecture are modeled as
activities with small yet non-negligible costs which are in-
curred by the computation of state features which facilitate
the decision-making process. These costs are accounted for
by the agent, whenever events trigger meta-level activity.
The state features and their functionality are described in
greater detail in the next section.

The following are three events that are handled by the
MLC and the corresponding set of possible action choices.
Arrival of a new task: When a new task arrives at the agent,
the meta-level control component has to decide whether
to reason about it later; drop the task completely; or to
do scheduling-related reasoning about an incoming task at
arrival time and if so, what type of scheduling - complex
or simple. The decision tree describing the various action
choices named A1-A9 is shown in Figure 2. Each of the
meta-level decisions has an associated decision tree. Schedul-
ing actions have costs with respect to scheduling time and
decommit costs of previously established commitments if
the previous schedule is significantly revised or completely
dropped. These costs are diminished or avoided completely
if scheduling a new task is postponed to a later convenient
time or completely avoided if the task is dropped. The meta-
level controller can decide that it does not have enough in-
formation to make a good decision and will consequently
choose to spend more time in collecting features which will
help with the decision making process. The meta-level con-
troller can hence choose to spend more resources to make a
better informed decision.

Invocation of the detailed scheduler: The parameters to
the scheduler are scheduling effort, time to schedule for and
slack amount. They are determined based on the current
state of the system including characteristics of the existing
schedule and the set of new tasks that are being scheduled.
The scheduling effort parameter determines the amount of
computational effort that should be invested by the sched-
uler. The parameter can be set to either HIGH, where a
high number of alternative schedules are produced and ex-
amined or LOW, where pruning occurs at a very early stage
and hence few alternative schedules are compared, reducing
the computational effort while compromising the accuracy of
the schedule. The time to schedule for parameter determines
the earliest starting time for the schedule to begin execution.
This parameter is offset by the sum of the time needed to
complete any primitive executions whose execution has been
interrupted by the meta-level control action and the time
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Figure 2: Decision tree when a new task arrives

spent on scheduling the new task(s). The slack parameter
determines the amount of flexibility available in the sched-
ule so that unexpected events can be handled by the agent
without it detrimentally affecting its expected performance
characteristics. The amount of slack to be inserted depends
on two factors, the amount of uncertainty in the schedule as
well the amount of expected meta-level control activity that
will occur during the duration of the schedule. The sched-
uler determines the amount uncertainty in the schedules it
builds and automatically inserts slack to handle highly un-
certain primitive actions. The meta-level control component
uses information about the arrival of future tasks to suggest
slack amounts to the scheduler. This information is read-
ily available by the sophisticated heuristic strategy. The
naive heuristic approach uses a simple method of predict-
ing arrival characteristics of future tasks based on past task
arrival characteristics and is described in the next section.

Domain action completes execution: When a primitive ac-
tion is completed, the MLC checks to see if the real-time
performance of the current schedule is as expected. If the
actual performance deviates from expected performance by
more than the available slack time, then a reschedule may
be initiated. A decision to reschedule helps in two ways: it
would preclude the agent from reaching a bad state in which
too many resources are spent on a schedule with bad per-
formance characteristics; and it would allow for meta-level
activities to be processed without the detrimental effects
such processing would have on domain activities if slack is
minimal.

Control Layer: The control layer consists of two sched-
ulers, simple and complex schedule, which differ in their
performance profiles.

Simple Scheduler: The simple scheduler is invoked by the
MLC and receives the task structure and goal criteria as
input. It uses the pre-computed abstract information of the
task to select the appropriate schedule which fits the criteria.
This will support reactive control for highly time constrained
situations. When an agent has to schedule a task but doesn’t
have the resources or time to call the complex domain-level
scheduler, the generic abstraction information of the task
structure can be used to provide a reasonable but often non-
optimal schedule.
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The agent gathers knowledge about all tasks that it is
capable of performing by subjecting each task through an
abstraction process. Abstraction is an offline process where
potential schedules and their associated performance char-
acteristics for achieving the high level tasks are discovered
for varying objective criteria. This is achieved by system-
atically searching over the space of objective criteria. The
abstraction hides the details of these schedules and provides
only the high level information necessary to make meta-level
choices.

Complex Scheduler: The domain level scheduler depicted
in the architecture is an extended version of the Design-
to-Criteria (DTC) scheduler[8]. Design-to-Criteria (DTC)
scheduling is the soft real-time process of finding an execu-
tion path through a hierarchical task network such that the
resultant schedule meets certain design criteria, such as real-
time deadlines, cost limits, and utility preferences. Casting
the language into an action-selecting-sequencing problem,
the process is to select a subset of primitive actions from a
set of candidate actions, and sequence them, so that the end
result is an end-to-end schedule of an agent’s activities that
meets situation specific design criteria. If the meta-level ac-
tion is to invoke the complex scheduler, the scheduler com-
ponent receives the task structure, objective criteria and a
set of scheduler parameters as input and outputs the best
satisficing schedule as a sequence of primitive actions.

Execution and Monitoring Layer:

The control layer can invoke the execution component ei-
ther to execute a single control action prescribed by the
meta-level controller or a series of domain actions deter-
mined by the control component. The execution results are
sent back to the MLC where they are evaluated and if the
execution performance deviates from expected performance,
then a reschedule is initiated.

This architecture and control flow provides the agent the
capability to adapt to changing conditions in an unpredictable
environment. This is explained in greater detail in the next
section, Moreover, the architecture is open in that the mod-
ules belonging to the various layers can be replaced by mod-
ules with better performance characteristics and the advan-
tages of the architecture will still hold true.

4. META-LEVEL CONTROL

The meta-level controller uses the current state of the
agent to make appropriate decisions. The real state of the
agent has to account for every task which has to be reasoned
about by the agent as well all the execution characteristics
of each of these tasks. This makes the system state, even
for simple scenarios, continuous and complex leading to an
enormous state space. We handle the complexity of the real
state by defining a higher level abstract state which captures
the important qualitative state information relevant to the
meta-level control decision making process. The following
are some of the features of the abstract state used by the
meta-level controller.

F1: Utility goodness of new task: It describes the
utility of a newly arrived task based on whether the new
task is very valuable, moderately valuable or not valuable
in relation to other tasks being performed by the agent.

F2: Deadline tightness of a particular task: It de-
scribes the tightness of the deadline of a particular task in
relation to expected deadlines of other tasks. It determines
whether the new task’s deadline is very close, moderately
close or far in the future.

F3: Utility goodness of current schedule: It de-
scribes the utility of the current schedule normalized by the
schedule length and is based on information provided by
the scheduler. This feature determines whether the current
schedule is very valuable, moderately valuable or not valu-
able with respect to other tasks and schedules.

F4: Deadline tightness of current schedule: It de-
scribes the deadline tightness of the current schedule in re-
lation to expected deadlines of tasks in that environment.
It determines whether the schedule’s deadline is very close,
moderately close or far in the future.

F5: Arrival of a valuable new task: It provides the
probability of a high utility, tight deadline task arriving in
the near future by using information on the task character-
istics like task type, frequency of arrival and tightness of
deadline.

Each of the state features takes on qualitative values such
as high, medium and low. The quantitative values such as
utility of 80 versus utility of 60 are classified into these qual-
itative buckets (high versus medium utility) in a principled
way as shown later in this section. As will be seen in the
experimental results in Section 5, these qualitative measures
provide information that can be exploited to make effective
meta-level control decisions.

We use a simple example to describe how these features
are computed, thereby determining the systems state. We
then provide examples of heuristics which use the system
state to choose the appropriate meta-level decision.

Suppose an agent A can perform the obtaining informa-
tion on laptops(Task T1). Instances of this task and other
tasks have associated arrival times and deadlines. Tasks are
represented as task structures. Figure 3 is the task structure
for Obtain Information on Laptops task. The top-level task
is to Obtain Information on Laptops. The information gath-
ering task is decomposed into a subtask which is to Access
Information Sites and method Choose Option which com-
pares information gathered from the various sites. Methods
are primitive actions which can be scheduled and executed
and are characterized by their expected utility and dura-
tion distributions. For instance, the utility distribution of
method Choose Option described as 10% 30 90% 45, indi-
cates that it achieves a utility value of 30 with probability



0.1 and utility of 45 with probability 0.9. Utility is a delib-
erately abstract domain-dependent concept that describes
the contribution of a particular action to overall problem
solving.

Obtain Information on Laptops can achieve utility only
by completing subtask Access Information Sites successfully
and then executing the method Choose Option successfully.
The minimum of the utilities is propagated to the Obtain In-
formation on Laptops task. This is indicated by the min()
utility accumulation function(qaf), which defines how per-
forming the subtasks relate to performing the parent task.
The enables arc between Access Information Site and Choose
Option is a non-local-effect (nle) or task interaction; it mod-
els the fact that information of laptops needs to be obtained
from various manufacturer sites in order to perform compar-
isons on the various products. Subtask Access Information
Sites can be achieve by successfully executing one or any
combination of the methods and the maximum of the utili-
ties of the methods which were executed is propagated back
the subtask.

T14 ={M1,M2,M3} , T1® ={M1,M3} and T1° = {M2,M3}

are three alternate plans to achieve task 7'1. The duration
distribution of T14 is (13% 20 58% 22 26% 24 3% 26), which
means that plan 714 takes 30 units of time 13% of the time,
22 time units 58% of the time and so on. Also T'14 has a
utility distribution of (6% 18 58% 20 36% 22). The utility
distribution (UDp, ;) and duration distribution (DDp,;) for
each plan P, is given below.

UDypya = (13% 20 58% 22 26% 24 3% 26)
DDyya = (6% 18 58% 20 36% 22)
UDypye = (10% 10 90% 12)
DDy, = (64% 14 32% 16 4% 18)
UDrpic = (60% 8 40% 10)

DDy,c = (16% 12 68% 14 16% 16)

We now use an example to show how these low-level sys-
tem parameters can be abstracted to determine the high-
level system state, Suppose T1 arrives at time 45 and has a
deadline of 62.

The earliest start time EST; for a task T; is the arrival
time AT; of the task delayed by the sum of Ry, the time
required for completing the execution of the action m; which
is interrupted by a meta-level control event and C}, the time
required for scheduling the new task.

EST; = AT; + Rpm; + Ci

Suppose in this example there is no other task in execu-
tion when T1 arrives at time 45 and the average time for
scheduling task T1 is 4 units. So, ESTy; = 45+4 = 49

The mazimum available duration M D; for a task T; is the
difference between the deadline of the task and its earliest
start time.

MD; = DL; — EST;

SO, MDT1 =17

Given a task T; and its maximum available duration M D;,
the probability that a plan Py’ meets its deadline PDLp; is
the sum of the probabilities of all values in the duration

distribution of plan P;¥ which are less than the task’s maxi-
mum available duration. For the above constraint where the
maximum available duration for task T'1 is 17,

PDLp =Y p; : ((100 * p;% z;) € DDp,;) A (z; < MD;)

j=1
PDLp s = 0.0; PDLps = 0.64 + 0.32=0.96

PDLgzic = 0.16 + 0.68 + 0.16 = 1.0

The expected duration EDp,; of a plan P, is the expected
duration of all values in the duration distribution of plan P;’
which are less than the maximum available duration for the
task.

E;=1 Pj*ZT

J
EDp; = PDLy, : ((100%p; % xj) e DDp,j )A(x; < M D)

(64% * 14 + 32% = 16)
0.98

EDgya =0.0; EDpyp = =14.37

(16% =12 + 68% *14 + 16% * 16)
1.0

The expected utility EUp,; of a plan P9, is the product of

the probability that the alternative meets its deadline and

the expected utility of all values in the utility distribution
of alternative P;7.

EDric = =14

EUps =Y PDLp,; *p; xx; : (100 ¥ p;% x;) € UDp,;)

Jj=1

When the maximum available duration for task T'1 is 17,
EUTIA = 0-0

EUpis =098 %0.1%10 4+ 0.98%0.9 % 12 = 11.564

EUpip =1.0%0.6%8 + 1.0%0.4%10 =88

Given the maximum available duration for a task, the
preferred alternative ALT; for a task T; is the alternative
whose expected utility to expected duration ratio is the high-
est. ALT; is the alternative which has the potential obtain
the maximum utility in minimum duration within the given
deadline.

n E UPiJ'

- pJ.
ALT; = P : I}’I:af( EDp,

Plan T1%’s expected utility to expected duration ratio is
0, plan T12’s expected utility to expected duration ratio is
11564 _ (804 and plan T'1°’s expected utility to expected

14.37

duration ratio is % = 0.629. So the alternative with the
maximum expected utility to expected duration ratio is 718

ALTr, =T1%

The utility goodness UD;(feature F1) of a task T; is the
measure which determines how good the expected utility to
expected duration of the task’s preferred alternative is in
relation to the expected utility to expected duration ratio of
the preferred alternatives of all the other tasks which arrive
at the system. The tasks with high utility are the those
whose expected utility to expected duration ratio are in the
66th percentile(top 1/3rd). Tasks whose ratios are in the



middle third are tasks with medium utility and tasks whose
ratios are in the bottom third are of low utility.

The utility goodness of the current schedule(feature F3)
changes as execution of the schedule proceeds. The utility
goodness increases as more effort is put into executing the
plans which are part of the agent’s schedule. This is be-
cause the tasks accrue utility only when their entire plan is
completed and not in the midst of the plan execution.

The deadline tightness(feature F2) T'D; of a task T; mea-
sures the flexibility of the maximum available duration. It
determines the amount by which the maximum available
duration of the can be reduced by unexpected meta-level
actions and similar delays and the system without having a
detrimental effect on the performance characteristics of the
preferred alternative for the task.

In the interests of space, we do not describe the detailed
computation underlying the determination of the tightness
of deadline feature of the task, but it is similar to the deter-
mination of utility goodness.

The deadline tightness of the current schedule(feature F4)
measures the flexibility in the execution duration of a sched-
ule. The lower the flexibility, the tighter the deadline.

Suppose a meta-level action on average has an expected
duration of Cirr.. The expected amount of time required for
handling unexpected meta-level actions CML;, during the
execution of task T;, is computed as follows:

CML; = Cur * JZ’C;' * M D;

This parameter is computed only by the meta-level con-
troller using the naive heuristic strategy and is used to de-
termine the amount of slack to insert into the schedule. Sup-
pose the average time spent on a meta-level action is 2 units,
4 tasks have arrived at the agent and the current time is 45.
MD; is 17 as determined previously. CMLpy = 2% % *
17 = 3.02 The amount of time expected to be spent on
future meta-level actions is 3 units.

The high priority task set for an agent a« HPTS, is the
set of tasks whose utility goodness is HIGH and deadline
tightness is TIGHT.

HPTS, = {T}} : (UGx = HIGH) A (TDy, = TIGHT)

The arrival rate of high priority tasks (feature F5) for an
agent o, ART,, is the ratio of the number of high priority
tasks that arrive at the system to the total number of tasks
n that have arrived at the system.

As mentioned in the previous section, there are three
events which invoke the meta-level controller: arrival of a
new task; invocation of the scheduler; and a domain action
completes execution. For the purposes of this discussion, we
focus our attention on the decision making process involved
with the arrival of a new task.

Naive Heuristic Strategy (NHS)

The NHS uses state-dependent hand-generated heuristics to
determine the best course of meta-level control action. The
current state information will allow the meta-level controller
to dynamically adjust its decisions. The heuristics, however,
are myopic and do not reason explicitly about the arrival of
tasks in the near future.

The following are some of the heuristics used for decision-
making by the NHS. In the interests of space, we have enu-
merate only a few interesting heuristics used to make a deci-

sion on a new task which has just arrived at the agent which
allow the NHS to make efficient action choices.
Heuristic Rules for NHS:

o If new task has low utility goodness, tight deadline;
current schedule is of high priority(high utility, tight
deadline), then best action is drop new task.

o If new task has high priority; current schedule has low
utility goodness, then best action is drop its current
schedule and schedule the new task immediately inde-
pendent of the schedule’s deadline..

e If new task has low or medium utility goodness, tight
deadline is to be scheduled, the agent will use the
abstraction-basedsimple scheduler.

e If new task and current schedule are of high prior-
ity(high utility, tight deadline); then best action is
delay new task. This is justified because the effort
invested in the executing schedule makes it more valu-
able than a new task since the schedule is closer to ac-
cruing utility. This is a consequence of the task char-
acteristic which accrues utility only when its plan is
completely executed rather than accruing utility uni-
formly over its execution duration.

Sophisticated Heuristic Strategy (SHS)

The Sophisticated Heuristic Strategy(SHS) is a set of hand-
generated rules which use knowledge about task arrival mod-
els to predict the environment characteristics. An envi-
ronment is typically characterized by the expected utilities
of the tasks, their deadline tightness and frequency of ar-
rival. In this paper, we provide the information on the three
parameters to the SHS. However, this information will be
learned by the SHS by gathering statistics over multiple runs
in future implementations. The meta-level controller can
make non-myopic decisions by including information about
its environment in its reasoning process. The following are
some sample heuristics which show that the SHS can be
more discriminatory about its decisions than NHS since it
reasons about tasks that could arrive in the future.
Heuristic Rules for SHS:

e If new task has low utility goodness, tight deadline;
high probability of high priority tasks arriving in the
near future, then best action is drop new task.

e If new task has very low utility goodness, loose dead-
line; low probability of a high priority tasks arriving in
the near future, then best action is schedule new task
using simple scheduling.

e If new task has high priority; current schedule has low
utility, tight deadline; low probability of high prior-
ity tasks arriving in the near future, then best action
isdrop its current schedule and schedule the new task
tmmediately.

e If new task and current schedule are of high priority;
high probability of high priority tasks arriving in the
near future, then best action is drop new task and con-
tinue with the current schedule

e If a low utility new task is to be scheduled; low prob-
ability of a high priority task arriving in the near fu-
ture, then best action is to use abstraction-based sim-
ple scheduler independent of the new task’s deadline
tightness.

e If new task has medium or low utility, medium or loose
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Figure 4: Experimental results comparing Util-
ity Accrued by the four different strategies to
meta-level control: Sophisticated Heuristic Strategy
(SHS); Naive Heuristic Strategy (NHS); Determin-
istic Strategy; and Random Strategy over 30 runs
each lasting 500 time units

deadline; current schedule has high utility; low proba-
bility of high priority task arriving in the near future,
then reasoning about the new task should be delayed
till later.

5. EXPERIMENTAL RESULTS

All the components of the agent architecture described in
Section 3 have been implemented. This includes the meta-
level controller, the various schedulers with different perfor-
mance profiles, and execution and monitoring component.
The agent was built using the JAF agent framework [2]. In
the experiments, we compare the performance of four differ-
ent strategies to meta-level control:

o Naive Heuristic Strategy (NHS): As described earlier,
NHS uses myopic heuristics which do not explicitly
reason about the likelihood of arrival of tasks in the
near future.

e Sophisticated Heuristic Strategy (SHS): The SHS uses
additional knowledge about the task arrival models to
make non-myopic choices of meta-level control actions.

e Deterministic Strategy: The deterministic strategy uses
a fixed choice of meta-level action. When a new task
arrives, this strategy always chooses to perform com-
plex scheduling on the new task along with the tasks
in the current schedule and tasks in the agenda. The
schedule is always invoked with a fixed effort level of
high and fixed slack amount of 10% of the total sched-
ule duration. This strategy also does not reschedule
upon when execution of a primitive completes inde-
pendent of its performance characteristics.

e Random Strategy: The random strategy randomly chooses

its actions for each of the three meta-level control de-
cisions.

The task environment generator randomly creates task
structures while varying three critical factors, namely, the
complexity of tasks c € {simple, complex, combination}, fre-
quency of arrival f e {high, medium,low} and tightness of
deadline d! € {tight, medium,loose}. Complexity of tasks
refers to the expected utilities of tasks and the number of
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Figure 5: Experimental results comparing Control
Durations by the four different strategies

alternative plans available to complete the task. Typically,
complex tasks have higher expected utility, higher expected
durations and a greater number of alternatives than simple
tasks. The frequency of arrival of tasks refers to the num-
ber of tasks which arrive within a finite time horizon. The
contention for resources among the tasks increases as the
task frequency increases. The tightness of deadline refers to
the parameter defined in the previous section and it is task
specific. The resource contention is also proportional to the
deadline tightness.

The experimental results in this section show the perfor-
mance of the various strategies for a particular environment.
Each strategy was evaluated over 30 runs of the system and
each run lasted 500 time units; The environment contains a
combination of simple and complex tasks. The frequency of
task arrival is high and ranges between 15 and 20 tasks in the
500 time unit interval. The deadline tightness is also high.
Simple tasks have an average duration of 22 time units and
complex tasks have an average duration of 32 time units.
The simulation experiments were conducted using the Mass
simulator [7].

Figure 4 shows the utility accrued over 30 runs by each
of the four strategies. The heuristic strategies (SHS and
NHS) significantly (p < 0.05) outperform the deterministic
strategy. The accepted hypothesis is that SHS and NHS on
average achieved at least 30% more utility than the deter-
ministic strategy. The random strategy is outperformed by
the other three strategies.

The average utility achieved and the percent of tasks com-
pleted by each of the four algorithms over 30 runs are shown
in Table 1. The heuristic strategies complete atleast 10%
more tasks than the deterministic strategy.

The null hypothesis of equivalence could not be rejected at
the .05 level when comparing the utilities of SHS and NHS
even though SHS has access to critical information about
the arrival model of the tasks while NHS does not. Figure 5
provides an explanation for this discrepancy. Although the
utilities gained by NHS and SHS are equivalent, the control
duration of NHS is significantly (p < 0.05) higher than that
of SHS. The high number of control actions did not adversely
affect the utility gained from domain actions because control
costs of tasks were relatively inexpensive in this particular
environment.

Upon detailed analysis of the data, we find that NHS as-
signs incorrect amounts of slack in the schedule which is



| | SHS | NHS |Deterministic | Random|

AUG | 194.77 | 195.16 150.16 124.89
ACT | 141.77 | 200.12 214.00 149.22
AT 15 15 15 15
ATC 6.8 6.96 6.12 5.54
PTC | 45% 46.4% 40.8% 36.93%

Table 1: Each column represents each of the four
algorithms; row 1 shows the average utility gain
(AUG) per run; row 2 is the average control du-
ration (ACT) per run; row 3 is the average number
of tasks that arrive (AT) at the system; row 4 is the
average number of tasks completed (ATC); row 5 is
the percent of tasks completed (PTC)

required to handle unexpected meta-level activities. This
leads to frequent reschedule calls and an increase in resources
spent on control actions.

When the cost of a reschedule was changed from 2 to 6
units, we observed that the average utility of SHS decreased
by 9% while the average utility of NHS decreased by 14%.

The amount of time spent on control actions by NHS
would detrimentally affect its performance and utility gain
in environments where the cost of control is higher or where
there is greater contention for resources by domain activi-
ties, thereby making control actions expensive.

6. CONCLUSIONS AND FUTURE WORK

In this paper we present a novel meta-level control agent
architecture for bounded-rational agents. The meta-level
control has limited and bounded computational overhead
and will support reasoning about planning and scheduling
costs as first-class objects. We have shown experimentally
that meta-level control is beneficial. The heuristics described
in this paper enable the meta-level controller to make satis-
ficing decisions which adapt to different environments. The
significance of the solution approach described in this pa-
per comes from the following observation: A few abstract
features which accurately capture the state information and
task arrival model enable the meta-level control component
to make useful decisions which significantly improve agent
performance.

We plan to extend this work by introducing more com-
plex features which will make the reasoning process more
robust. Some such features include relation of slack frag-
ments in local schedule to new task. This will enable an
agent to fit a new task in its current schedule if it is pos-
sible and avoid a reschedule. Another feature would be to
estimate the decommitment cost for a particular task. This
will enable us to consider environments in which agents can
decommit from tasks which they have previously agreed to
complete. In this work, we assume that the arrival model
is directly provided to the sophisticated heuristic approach.
An extension to make the approach more feasible would be
for the agent to learn the arrival model over multiple runs
of the system and then use the appropriate heuristics.

As mentioned earlier, we plan to use the insight gathered
from the heuristic approach to construct the state features,
reward functions and algorithms to apply a reinforcement
learning approach to this problem. We expect this analy-
sis to provide valuable experience about applying RL tech-
niques to complex real-world problems.

Our overall goal is to introduce efficient meta-level control

in cooperative multi-agent systems. We believe that opti-
mizing meta-level control in cooperative systems would lead
to efficient meta-level control of the entire multi-agent sys-
tem. We will begin by considering coordination, which facil-
itates cooperation with other agents in order to achieve high-
level tasks, as a control action. Coordination and scheduling
are tightly coupled control actions - coordination usually re-
quires multiple calls to a scheduler. We plan to study the
interactions between the different control actions and how
this would affect the various meta-level control strategies.
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